2023年河北省高碑店市数学九上期末质量检测模拟试题含解析_第1页
2023年河北省高碑店市数学九上期末质量检测模拟试题含解析_第2页
2023年河北省高碑店市数学九上期末质量检测模拟试题含解析_第3页
2023年河北省高碑店市数学九上期末质量检测模拟试题含解析_第4页
2023年河北省高碑店市数学九上期末质量检测模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年河北省高碑店市数学九上期末质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.小明沿着坡度为的山坡向上走了,则他升高了()A. B. C. D.2.下列标志图中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.3.若点,,在双曲线上,则,,的大小关系是()A. B. C. D.4.已知是关于的一元二次方程的两个根,且满足,则的值为()A.2 B. C.1 D.5.如图,AB,AC分别为⊙O的内接正三角形和内接正四边形的一边,若BC恰好是同圆的一个内接正n边形的一边,则n的值为()A.8 B.10 C.12 D.156.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为,,.让转盘自由转动,指针停止后落在黄色区域的概率是A. B. C. D.7.图中几何体的俯视图是()A. B. C. D.8.下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形不一定是平行四边形D.对角线互相垂直平分且相等的四边形一定是正方形9.在△ABC中,AB=AC=13,BC=24,则tanB等于()A. B. C. D.10.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是()A.摸出的三个球中至少有一个球是黑球B.摸出的三个球中至少有一个球是白球C.摸出的三个球中至少有两个球是黑球D.摸出的三个球中至少有两个球是白球11.已知二次函数y=﹣x2+x+6及一次函数y=﹣x+m,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新函数(如图所示),请你在图中画出这个新图象,当直线y=﹣x+m与新图象有4个交点时,m的取值范围是()A.﹣<m<3 B.﹣<m<2 C.﹣2<m<3 D.﹣6<m<﹣212.已知x1,x2是一元二次方程x2-2x-1=0的两根,则x1+x2-x1·x2的值是()A.1 B.3 C.-1 D.-3二、填空题(每题4分,共24分)13.在一个不透明的口袋中,有大小、形状完全相同,颜色不同的球15个,从中摸出红球的概率为,则袋中红球的个数为_____.14.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:其中正确结论有_____.①abc>0;②16a+4b+c<0;③4ac﹣b2<8a;④<a;⑤b<c.15.如图,小正方形构成的网络中,半径为1的⊙O在格点上,则图中阴影部分两个小扇形的面积之和为▲(结果保留).16.如图,与关于点成中心对称,若,则______.17.若=,则的值为______.18.如图,在中,,,,点是斜边的中点,则_______;三、解答题(共78分)19.(8分)如图,一次函数y1=x+4的图象与反比例函数y2=的图象交于A(﹣1,a),B两点,与x轴交于点C.(1)求k.(2)根据图象直接写出y1>y2时,x的取值范围.(3)若反比例函数y2=与一次函数y1=x+4的图象总有交点,求k的取值.20.(8分)如图,在边长为1的小正方形组成的网格中,△AOB的三个顶点均在格点上,点A、B的坐标分别为(3,2)、(1,3).△AOB绕点O逆时针旋转90º后得到△A1OB1.(1)在网格中画出△A1OB1,并标上字母;(2)点A关于O点中心对称的点的坐标为;(3)点A1的坐标为;(4)在旋转过程中,点B经过的路径为弧BB1,那么弧BB1的长为.21.(8分)如图,平面直角坐标中,把矩形OABC沿对角线OB所在的直线折叠,点A落在点D处,OD与BC交于点E.OA、OC的长是关于x的一元二次方程x2﹣9x+18=0的两个根(OA>OC).(1)求A、C的坐标.(2)直接写出点E的坐标,并求出过点A、E的直线函数关系式.(3)点F是x轴上一点,在坐标平面内是否存在点P,使以点O、B、P、F为顶点的四边形为菱形?若存在请直接写出P点坐标;若不存在,请说明理由.22.(10分)抛物线上部分点的横坐标,纵坐标的对应值如下表:-3-2-1010430(1)把表格填写完整;(2)根据上表填空:①抛物线与轴的交点坐标是________和__________;②在对称轴右侧,随增大而_______________;③当时,则的取值范围是_________________;(3)请直接写出抛物线的解析式.23.(10分)某体育老师统计了七年级甲、乙两个班女生的身高,并绘制了以下不完整的统计图.请根据图中信息,解决下列问题:(1)两个班共有女生多少人?(2)将频数分布直方图补充完整;(3)求扇形统计图中部分所对应的扇形圆心角度数;(4)身高在的5人中,甲班有3人,乙班有2人,现从中随机抽取两人补充到学校国旗队.请用列表法或画树状图法,求这两人来自同一班级的概率.24.(10分)如图,AD、A′D′分别是△ABC和△A′B′C′的中线,且.判断△ABC和△A′B′C′是否相似,并说明理由.25.(12分)已知△ABC内接于⊙O,过点A作直线EF.(1)如图①所示,若AB为⊙O的直径,要使EF成为⊙O的切线,还需要添加的一个条件是(至少说出两种):或者.(2)如图②所示,如果AB是不过圆心O的弦,且∠CAE=∠B,那么EF是⊙O的切线吗?试证明你的判断.26.数学不仅是一门学科,也是一种文化,即数学文化.数学文化包括数学史、数学美和数学应用等多方面.古时候,在某个王国里有一位聪明的大臣,他发明了国际象棋,献给了国王,国王从此迷上了下棋,为了对聪明的大臣表示感谢,国王答应满足这位大臣的一个要求.大臣说:“就在这个棋盘上放一些米粒吧.第格放粒米,第格放粒米,第格放粒米,然后是粒、粒、粒······一只到第格.”“你真傻!就要这么一点米粒?”国王哈哈大笑.大臣说:“就怕您的国库里没有这么多米!”国王的国库里真没有这么多米吗?题中问题就是求是多少?请同学们阅读以下解答过程就知道答案了.设,则即:事实上,按照这位大臣的要求,放满一个棋盘上的个格子需要粒米.那么到底多大呢?借助计算机中的计算器进行计算,可知答案是一个位数:,这是一个非常大的数,所以国王是不能满足大臣的要求.请用你学到的方法解决以下问题:我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座层塔共挂了盏灯,且相邻两层中的下一层灯数是上一层灯数的倍,则塔的顶层共有多少盏灯?计算:某中学“数学社团”开发了一款应用软件,推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知一列数:,其中第一项是,接下来的两项是,再接下来的三项是,以此类推,求满足如下条件的所有正整数,且这一数列前项和为的正整数幂.请直接写出所有满足条件的软件激活码正整数的值.

参考答案一、选择题(每题4分,共48分)1、A【分析】根据题意作出图形,然后根据坡度为1:2,设BC=x,AC=2x,根据AB=1000m,利用勾股定理求解.【详解】解:根据题意作出图形,∵坡度为1:2,∴设BC=x,AC=2x,∴,∵AB=1000m,∴,解得:,故选A.【点睛】本题考查了解直角三角形的应用,解答本题的关键是根据坡度构造直角三角形然后求解.2、B【分析】根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形;一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.【详解】解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,也是中心对称图形;C、是轴对称图形,不是中心对称图形;D、不是轴对称图形,也不是中心对称图形.故选B.【点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.3、C【分析】根据题目分别将三个点的横坐标值带入双曲线解析式,即可得出所对应的函数值,再比较大小即可.【详解】解:∵若点,,在双曲线上,∴∴故选:C.【点睛】本题考查的知识点是反比例函数图象上点的坐标特征,本题还可以先分清各点所在象限,再利用各自的象限内反比例函数的增减性解决问题.4、B【分析】根据根与系数的关系,即韦达定理可得,易求,从而可得,解可求,再利用根的判别式求出符合题意的.【详解】由题意可得,a=1,b=k,c=-1,∵满足,∴①根据韦达定理②把②式代入①式,可得:k=-2故选B.【点睛】此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合进行解题.5、C【分析】根据图形求出正多边形的中心角,再由正多边形的中心角和边的关系:,即可求得.【详解】连接OA、OB、OC,如图,∵AC,AB分别为⊙O的内接正四边形与内接正三角形的一边,∴∠AOC==90°,∠AOB==120°,∴∠BOC=∠AOB﹣∠AOC=30°,∴n==12,即BC恰好是同圆内接一个正十二边形的一边.故选:C.【点睛】本题考查正多边形的中心角和边的关系,属基础题.6、B【分析】求出黄区域圆心角在整个圆中所占的比例,这个比例即为所求的概率.【详解】∵黄扇形区域的圆心角为90°,所以黄区域所占的面积比例为,即转动圆盘一次,指针停在黄区域的概率是,故选B.【点睛】本题将概率的求解设置于转动转盘游戏中,考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比.7、D【解析】本题考查了三视图的知识找到从上面看所得到的图形即可.从上面看可得到三个矩形左右排在一起,中间的较大,故选D.8、D【分析】根据矩形的判定、菱形的判定、平行四边形和正方形的判定判断即可.【详解】解:A、对角线相等的平行四边形是矩形,原命题是假命题;B、对角线互相垂直的平行四边形是菱形,原命题是假命题;C、对角线互相平分的四边形一定是平行四边形,原命题是假命题;D、对角线互相垂直平分且相等的四边形一定是正方形,原命题是真命题;故选:D.【点睛】此题主要考查了命题与定理,正确把握特殊四边形的判定方法是解题关键.9、B【解析】如图,等腰△ABC中,AB=AC=13,BC=24,过A作AD⊥BC于D,则BD=12,在Rt△ABD中,AB=13,BD=12,则,AD=,故tanB=.故选B.【点睛】考查的是锐角三角函数的定义、等腰三角形的性质及勾股定理.10、A【分析】根据必然事件的概念:在一定条件下,必然发生的事件叫做必然事件分析判断即可.【详解】A、是必然事件;B、是随机事件,选项错误;C、是随机事件,选项错误;D、是随机事件,选项错误.故选A.11、D【解析】如图,解方程﹣x2+x+6=0得A(﹣2,0),B(3,0),再利用折叠的性质求出折叠部分的解析式为y=(x+2)(x﹣3),即y=x2﹣x﹣6(﹣2≤x≤3),然后求出直线•y=﹣x+m经过点A(﹣2,0)时m的值和当直线y=﹣x+m与抛物线y=x2﹣x﹣6(﹣2≤x≤3)有唯一公共点时m的值,从而得到当直线y=﹣x+m与新图象有4个交点时,m的取值范围.【详解】如图,当y=0时,﹣x2+x+6=0,解得x1=﹣2,x2=3,则A(﹣2,0),B(3,0),将该二次函数在x轴上方的图象沿x轴翻折到x轴下方的部分图象的解析式为y=(x+2)(x﹣3),即y=x2﹣x﹣6(﹣2≤x≤3),当直线y=﹣x+m经过点A(﹣2,0)时,2+m=0,解得m=﹣2;当直线y=﹣x+m与抛物线y=x2﹣x﹣6(﹣2≤x≤3)有唯一公共点时,方程x2﹣x﹣6=﹣x+m有相等的实数解,解得m=﹣6,所以当直线y=﹣x+m与新图象有4个交点时,m的取值范围为﹣6<m<﹣2,故选D.【点睛】本题考查了抛物线与几何变换,抛物线与x轴的交点等,把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程是解决此类问题常用的方法.12、B【分析】直接根据根与系数的关系求解.【详解】由题意知:,,∴原式=2-(-1)=3故选B.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则,.二、填空题(每题4分,共24分)13、【分析】等量关系为:红球数:总球数=,把相关数值代入即可求解.【详解】设红球有x个,根据题意得:,

解得:x=1.

故答案为1.【点睛】用到的知识点为:概率=所求情况数与总情况数之比.14、①③④.【分析】根据二次函数图象的开口方向、对称轴位置、与x轴的交点坐标、顶点坐标等知识,逐个判断即可.【详解】抛物线开口向上,因此a>0,对称轴为x=1>0,a、b异号,故b<0,与y轴的交点B在(0,﹣2)和(0,﹣1)之间,即﹣2<c<﹣1,所以abc>0,故①正确;抛物线x轴交于点A(﹣1,0),对称轴为x=1,因此与x轴的另一个交点为(3,0),当x=4时,y=16a+4b+c>0,所以②不正确;由对称轴为x=1,与y轴交点在(0,﹣2)和(0,﹣1)之间,因此顶点的纵坐标小于﹣1,即<﹣1,也就是4ac﹣b2<﹣4a,又a>0,所以4ac﹣b2<8a是正确的,故③是正确的;由题意可得,方程ax2+bx+c=0的两个根为x1=﹣1,x2=3,又x1•x2=,即c=﹣3a,而﹣2<c<﹣1,也就是﹣2<﹣3a<﹣1,因此<a<,故④正确;抛物线过(﹣1,0)点,所以a﹣b+c=0,即a=b﹣c,又a>0,即b﹣c>0,得b>c,所以⑤不正确,综上所述,正确的结论有三个:①③④,故答案为:①③④.【点评】本题考查了二次函数的图象和性质,掌握a、b、c的值决定抛物线的位置以及二次函数与一元二次方程的关系,是正确判断的前提.15、.【解析】如图,先根据直角三角形的性质求出∠ABC+∠BAC的值,再根据扇形的面积公式进行解答即可:∵△ABC是直角三角形,∴∠ABC+∠BAC=90°.∵两个阴影部分扇形的半径均为1,∴S阴影.16、【分析】由题意根据中心对称的定义可得AB=DE,从而即可求值.【详解】解:与△DEC关于点成中心对称,.【点睛】本题主要考查了中心对称的定义,解题的关键是熟记中心对称的定义即把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.17、4【分析】由=可得,代入计算即可.【详解】解:∵=,∴,则故答案为:4.【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.18、5【分析】根据直角三角形斜边上的中线等于斜边的一半、等边三角形的判定和性质解答.【详解】解:∵在中,,,∴,∵点是斜边的中点,∴BD=AD,∴△BCD是等边三角形,BD=BC=5.故答案为:5.【点睛】本题考查直角三角形斜边上的中线的性质,解题关键是熟练掌握直角三角形斜边上的中线等于斜边的一半.三、解答题(共78分)19、(1)-3;(2)﹣3<x<﹣1;(3)k≥﹣4且k≠1.【分析】(1)把点A坐标代入一次函数关系式可求出a的值,确定点A的坐标,再代入反比例函数关系式可求出k的值,(2)一次函数与反比例函数联立,可求出交点B的坐标,再根据图象可得出当y1>y2时,x的取值范围.(3)若反比例函数y2=与一次函数y1=x+4的图象总有交点,就是x2+4x﹣k=1有实数根,根据根的判别式求出k的取值范围.【详解】(1)一次函数y1=x+4的图象过A(﹣1,a),∴a=﹣1+4=3,∴A(﹣1,3)代入反比例函数y2=得,k=﹣3;(2)由(1)得反比例函数,由题意得,,解得,,,∴点B(﹣3,1)当y1>y2,即一次函数的图象位于反比例函数图象上方时,自变量的取值范围为:﹣3<x<﹣1;(3)若反比例函数y2=与一次函数y1=x+4的图象总有交点,即,方程=x+4有实数根,也就是x2+4x﹣k=1有实数根,∴16+4k≥1,解得,k≥﹣4,∵k≠1,∴k的取值范围为:k≥﹣4且k≠1.【点睛】此题考查待定系数法求函数解析式,函数图象与二元一次方程组的关系,一次函数与反比例函数交点的确定,正确理解题意是解题的关键.20、(1)见解析;(2)(-3,-2);(3)(-2,3);(4)【分析】(1)根据网格结构找出点A、B绕点O逆时针旋转90°后的对应点A1、B1的位置,然后顺次连接即可;(2)根据关于O点中心对称的点的坐标的特点直接写出答案即可;(3)根据平面直角坐标系写出点A1的坐标即可;(4)利用勾股定理列式求出OB,再根据弧长公式列式计算即可得解.【详解】(1)△A1OB1如图所示;(2)点A关于O点中心对称的点的坐标为(-3,-2);(3)点A1的坐标为(﹣2,3);(4)由勾股定理得,OB=,弧BB1的长为:.考点:1.作图-旋转变换;2.弧长的计算.21、(1)A(6,0),C(0,3);(2)E(,3),y=﹣x+;(3)满足条件的点P坐标为(6﹣3,3)或(6+3,3)或(,3)或(6,﹣3).【解析】(1)解方程求出OA、OC的长即可解决问题;

(2)首先证明EO=EB,设EO=EB=x,在Rt△ECO中,EO2=OC2+CE2,构建方程求出x,可得点E坐标,再利用待定系数法即可解决问题;

(3)分情形分别求解即可解决问题;【详解】(1)由x2﹣9x+18=0可得x=3或6,∵OA、OC的长是关于x的一元二次方程x2﹣9x+18=0的两个根(OA>OC),∴OA=6,OC=3,∴A(6,0),C(0,3).(2)如图1中,∵OA∥BC,∴∠EBC=∠AOB,根据翻折不变性可知:∠EOB=∠AOB,∴∠EOB=∠EBO,∴EO=EB,设EO=EB=x,在Rt△ECO中,∵EO2=OC2+CE2,∴x2=32+(6﹣x)2,解得x=,∴CE=BC﹣EB=6﹣=,∴E(,3),设直线AE的解析式为y=kx+b,则有,解得,∴直线AE的函数解析式为y=﹣x+.(3)如图,OB==3.①当OB为菱形的边时,OF1=OB=BP1=3=,故P1(6﹣3,3),OF3=P3F3=BP3=3,故P3(6+3,3).②当OB为菱形的对角线时,∵直线OB的解析式为y=x,∴线段OB的垂直平分线的解析式为y=﹣2x+,可得P2(,3),③当OF4问问对角线时,可得P4(6,﹣3)综上所述,满足条件的点P坐标为(6﹣3,3)或(6+3,3)或(,3)或(6,﹣3).【点睛】本题考查的是一次函数的综合题,熟练掌握一次函数是解题的关键.22、(1)2;(2)①抛物线与轴的交点坐标是和;②随增大而减小;③的取值范围是;(2).【分析】(1)利用表中对应值的特征和抛物线的对称性得到抛物线的对称轴为直线x=-1,则x=0和x=-2时,y的值相等,都为2;

(2)①利用表中y=0时x的值可得到抛物线与x轴的交点坐标;

②设交点式y=a(x+2)(x-1),再把(0,2)代入求出a得到抛物线解析式为y=-x2-2x+2,则可判断抛物线的顶点坐标为(-1,1),抛物线开口向下,然后根据二次函数的性质解决问题;③由于x=-2时,y=2;当x=2时,y=-5,结合二次函数的性质可确定y的取值范围;

(2)由(2)得抛物线解析式.【详解】解:(1)∵x=-2,y=0;x=1,y=0,

∴抛物线的对称轴为直线x=-1,

∴x=0和x=-2时,y=2;故答案是:2;

(2)①∵x=-2,y=0;x=1,y=0,∴抛物线与x轴的交点坐标是(-2,0)和(1,0);故答案是:(-2,0)和(1,0);

②设抛物线解析式为y=a(x+2)(x-1),

把(0,2)代入得2=-2a,解得a=-1,

∴抛物线解析式为y=-(x+2)(x-1),即y=-x2-2x+2,

抛物线的顶点坐标为(-1,1),抛物线开口向下,

∴在对称轴右侧,y随x增大而减小;故答案是:减小;

③当x=-2时,y=2;当x=2时,y=-1-1+2=-5,当x=-1,y有最大值为1,

∴当-2<x<2时,则y的取值范围是-5<y≤1.故答案是:-5<y≤1;

(2)由(2)得抛物线解析式为y=-x2-2x+2,

故答案是:y=-x2-2x+2.【点睛】本题考查了抛物线解析式的求法及与x轴的交点问题:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点问题转化为关于x的一元二次方程的问题.也考查了二次函数的性质.23、(1)50;(2)详见解析;(3);(4)【分析】(1)根据D的人数除以所占的百分比即可的总人数;(2)根据C的百分比乘以总人数,可得C的人数,再根据总人数减去A、B、C、D、F,便可计算的E的人数,分别在直方图上表示即可.(3)根据直方图上E的人数比总人数即可求得的E百分比,再计算出圆心角即可.(4)画树状图统计总数和来自同一班级的情况,再计算概率即可.【详解】解:(1)总人数为人,答:两个班共有女生50人;(2)C部分对应的人数为人,部分所对应的人数为;频数分布直方图补充如下:(3)扇形统计图中部分所对应的扇形圆心角度数为;(4)画树状图:共有20种等可能的结果数,其中这两人来自同一班级的情况占8种,所以这两人来自同一班级的概率是.【点睛】本题是一道数据统计的综合性题目,难度不大,这类题目,往往容易得分,应当熟练的掌握.2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论