2023年广西蒙山县数学九年级第一学期期末学业水平测试试题含解析_第1页
2023年广西蒙山县数学九年级第一学期期末学业水平测试试题含解析_第2页
2023年广西蒙山县数学九年级第一学期期末学业水平测试试题含解析_第3页
2023年广西蒙山县数学九年级第一学期期末学业水平测试试题含解析_第4页
2023年广西蒙山县数学九年级第一学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年广西蒙山县数学九年级第一学期期末学业水平测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.关于的一元二次方程有两个相等的实数根,则的值为()A. B. C. D.2.如图,在菱形中,,是线段上一动点(点不与点重合),当是等腰三角形时,()A.30° B.70° C.30°或60° D.40°或70°3.已知点O是△ABC的外心,作正方形OCDE,下列说法:①点O是△AEB的外心;②点O是△ADC的外心;③点O是△BCE的外心;④点O是△ADB的外心.其中一定不成立的说法是()A.②④ B.①③ C.②③④ D.①③④4.对于不为零的两个实数a,b,如果规定a★b,那么函数的图象大致是()A. B. C. D.5.下列成语所描述的事件是必然发生的是()A.水中捞月 B.拔苗助长 C.守株待兔 D.瓮中捉鳖6.如图,过⊙O上一点C作⊙O的切线,交⊙O直径AB的延长线于点D.若∠D=40°,则∠A的度数为()A.20° B.25° C.30° D.40°7.如图,矩形中,,交于点,,分别为,的中点.若,,则的度数为()A. B. C. D.8.如图,的外接圆的半径是.若,则的长为()A. B. C. D.9.如图,∠1=∠2,则下列各式不能说明△ABC∽△ADE的是()A.∠D=∠B B.∠E=∠C C. D.10.(11·大连)某农科院对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每公顷产量的两组数据,其方差分别为s甲2=0.002、s乙2=0.03,则()A.甲比乙的产量稳定 B.乙比甲的产量稳定C.甲、乙的产量一样稳定 D.无法确定哪一品种的产量更稳定二、填空题(每小题3分,共24分)11.如图,直角三角形的直角顶点在坐标原点,,若点在反比例函数的图象上,则经过点的反比例函数解析式为___;12.如图,已知,,则_____.13.一支反比例函数,若,则y的取值范围是_____.14.如图,正方形ABCD中,P为AD上一点,BP⊥PE交BC的延长线于点E,若AB=6,AP=4,则CE的长为_____.15.如图,以等边△ABC的一边AB为直径的半圆O交AC于点D,交BC于点E,若AB=4,则阴影部分的面积是______.16.已知抛物线y=x2+2kx﹣6与x轴有两个交点,且这两个交点分别在直线x=2的两侧,则k的取值范围是_____.17.如图,在△ABC中,D,E分别是AC,BC边上的中点,则三角形CDE的面积与四边形ABED的面积比等于____________18.若=,则的值为______.三、解答题(共66分)19.(10分)只有1和它本身两个因数且大于1的正整数叫做素数.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想是:每个大于2的偶数都可以表示为两个素数的和,如16=3+1.(1)若从7,11,19,23中随机抽取1个素数,则抽到的素数是7的概率是_______;(2)若从7,11,19,23中随机抽取1个素数,再从余下的3个数字中随机抽取1个素数,用面树状图或列表的方法求抽到的两个素数之和大于等于30的概率,20.(6分)一个不透明的布袋里有材质、形状、大小完全相同的4个小球,它们的表面分别印有1、2、3、4四个数字(每个小球只印有一个数字),小华从布袋里随机摸出一个小球,把该小球上的数字记为,小刚从剩下的3个小球中随机摸出一个小球,把该小球上的数字记为.(1)若小华摸出的小球上的数字是2,求小刚摸出的小球上的数字是3的概率;(2)利用画树状图或列表格的方法,求点在函数的图象上的概率.21.(6分)如图,的直径为,点在上,点,分别在,的延长线上,,垂足为,.(1)求证:是的切线;(2)若,,求的长.22.(8分)解方程23.(8分)如图,是的直径,过的中点.,垂足为.(1)求证:直线是的切线;(2)若,的直径为,求的长及的值.24.(8分)解方程:x2﹣2x﹣5=1.25.(10分)如图,在中,,的平分线交于,为上一点,,以为圆心,以的长为半径画圆.(1)求证:是⊙的切线;(2)求证:.26.(10分)如图,一艘游轮在A处测得北偏东45°的方向上有一灯塔B.游轮以20海里/时的速度向正东方向航行2小时到达C处,此时测得灯塔B在C处北偏东15°的方向上,求A处与灯塔B相距多少海里?(结果精确到1海里,参考数据:≈1.41,≈1.73)

参考答案一、选择题(每小题3分,共30分)1、A【分析】根据方程有两个相等的实数根列方程求解即可.【详解】由题意得∆=0,∴4-4k=0,解得k=1,故选:A.【点睛】此题考查了一元二次方程的根的情况求未知数的值,正确掌握一元二次方程的根的三种情况:方程有两个不相等的实数根时∆>0,方程有两个相等的实数根时∆=0,方程没有实数根时∆<0.2、C【分析】根据是等腰三角形,进行分类讨论【详解】是菱形,,不符合题意所以选C3、A【分析】根据三角形的外心得出OA=OC=OB,根据正方形的性质得出OA=OC<OD,求出OA=OB=OC=OE≠OD,再逐个判断即可.【详解】解:如图,连接OB、OD、OA,∵O为锐角三角形ABC的外心,∴OA=OC=OB,∵四边形OCDE为正方形,∴OA=OC<OD,∴OA=OB=OC=OE≠OD,∴OA=OC≠OD,即O不是△ADC的外心,OA=OE=OB,即O是△AEB的外心,OB=OC=OE,即O是△BCE的外心,OB=OA≠OD,即O不是△ABD的外心,故选:A.【点睛】本题考查了正方形的性质和三角形的外心.熟记三角形的外心到三个顶点的距离相等是解决此题的关键.4、C【分析】先根据所给新定义运算求出分段函数解析式,再根据函数解析式来判断函数图象即可.【详解】解:∵a★b,∴∴当x>2时,函数图象在第一象限且自变量的值不等于2,当x≤2时,是反比例函数,函数图象在二、四象限.故应选C.【点睛】本题考查了分段函数及其图象,理解所给定义求出分段函数解析式是解题的关键.5、D【分析】必然事件是指一定会发生的事件;不可能事件是指不可能发生的事件;随机事件是指可能发生也可能不发生的事件.根据定义,对每个选项逐一判断【详解】解:A选项,不可能事件;B选项,不可能事件;C选项,随机事件;D选项,必然事件;故选:D【点睛】本题考查了必然事件、不可能事件、随机事件,正确理解必然事件、不可能事件、随机事件的定义是本题的关键6、B【分析】直接利用切线的性质得出∠OCD=90°,进而得出∠DOC=50°,进而得出答案.【详解】解:连接OC,∵DC是⊙O的切线,C为切点,∴∠OCD=90°,∵∠D=40°,∴∠DOC=50°,∵AO=CO,∴∠A=∠ACO,∴∠A=∠DOC=25°.

故选:B.【点睛】此题主要考查了切线的性质,正确得出∠DOC=50°是解题关键.7、A【分析】根据矩形的性质和直角三角形的性质以及中位线的性质,即可得到答案.【详解】∵,分别为,的中点,∴MN是∆OBC的中位线,∴OB=2MN=2×3=6,∵四边形是矩形,∴OB=OD=OA=OC=6,即:AC=12,∵AB=6,∴AC=2AB,∵∠ABC=90°,∴=30°.故选A.【点睛】本题主要考查矩形的性质和直角三角形的性质以及中位线的性质,掌握矩形的对角线互相平分且相等,是解题的关键.8、A【分析】由题意连接OA、OB,根据圆周角定理求出∠AOB,利用勾股定理进行计算即可.【详解】解:连接OA、OB,由圆周角定理得:∠AOB=2∠C=90°,所以的长为.故选:A.【点睛】本题考查的是三角形的外接圆和外心的概念和性质,掌握圆周角定理和勾股定理是解题的关键.9、D【分析】根据∠1=∠2,可知∠DAE=∠BAC,因此只要再找一组角或一组对应边成比例即可.【详解】解:A和B符合有两组角对应相等的两个三角形相似;C、符合两组对应边的比相等且相应的夹角相等的两个三角形相似;D、对应边成比例但无法证明其夹角相等,故其不能推出两三角形相似.故选D.【点睛】考查了相似三角形的判定:①有两个对应角相等的三角形相似;②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似.10、A【解析】方差是刻画波动大小的一个重要的数字.与平均数一样,仍采用样本的波动大小去估计总体的波动大小的方法,方差越小则波动越小,稳定性也越好.【详解】因为s=0.002<s=0.03,所以,甲比乙的产量稳定.故选A【点睛】本题考核知识点:方差.解题关键点:理解方差意义.二、填空题(每小题3分,共24分)11、【解析】构造K字型相似模型,直接利用相似三角形的判定与性质得出,而由反比例性质可知S△AOD==3,即可得出答案.【详解】解:过点B作BC⊥x轴于点C,过点A作AD⊥x轴于点D,

∵∠BOA=90°,

∴∠BOC+∠AOD=90°,

∵∠AOD+∠OAD=90°,

∴∠BOC=∠OAD,

又∵∠BCO=∠ADO=90°,

∴△BCO∽△ODA,

∴,

∴,∴S△BCO=S△AOD

∵S△AOD===3,∴S△BCO=×3=1∵经过点B的反比例函数图象在第二象限,

故反比例函数解析式为:y=.

故答案为.【点睛】此题主要考查了相似三角形的判定与性质以及反比例函数数的性质,正确得出S△BOC=1是解题关键.12、105°【解析】如图,根据邻补角的定义求出∠3的度数,继而根据平行线的性质即可求得答案.【详解】∵∠1+∠3=180°,∠1=75°,∴∠3=105°,∵a//b,∴∠2=∠3=105°,故答案为:105°.【点睛】本题考查了邻补角的定义,平行线的性质,熟练掌握两直线平行,内错角相等是解本题的关键.13、y<-1【分析】根据函数解析式可知当x>0时,y随x的增大而增大,求出当x=1时对应的y值即可求出y的取值范围.【详解】解:∵反比例函数,-4<0,∴当x>0时,y随x的增大而增大,当x=1时,y=-1,∴当,则y的取值范围是y<-1,故答案为:y<-1.【点睛】本题考查了根据反比例函数自变量的取值范围,确定函数值的取值范围,解题的关键是熟知反比例函数的增减性.14、2【分析】利用同角的余角相等可得出∠ABP=∠DPF,结合∠A=∠D可得出△APB∽△DFP,利用相似三角形的性质可求出DF的长,进而可得出CF的长,由∠PFD=∠EFC,∠D=∠ECF可得出△PFD∽△EFC,再利用相似三角形的性质可求出CE的长.【详解】∵四边形ABCD为正方形,∴∠A=∠D=∠ECF=90°,AB=AD=CD=6,∴DP=AD﹣AP=1.∵BP⊥PE,∴∠BPE=90°,∴∠APB+∠DPF=90°.∵∠APB+∠ABP=90°,∴∠ABP=∠DPF.又∵∠A=∠D,∴△APB∽△DFP,∴,即,∴DF=,∴CF=.∵∠PFD=∠EFC,∠D=∠ECF,∴△PFD∽△EFC,∴=,即,∴CE=2.故答案为:2.【点睛】此题考查相似三角形判定与性质以及正方形的性质,利用相似三角形的判定定理,找出△APB∽△DFP及△PFD∽△EFC是解题的关键.15、【分析】作辅助线证明△AOD≌△DOE≌△EOB≌△CDE,且都为等边三角形,利用等边三角形面积公式S=即可解题.【详解】解:连接DE,OD,OE,在圆中,OA=OD=OE=OB,∵△ABC是等边三角形,∴∠A=60°,∴△AOD≌△DOE≌△EOB≌△CDE,且都为等边三角形,∵AB=4,即OA=OD=OE=OB=2,易证阴影部分面积=S△CDE==.【点睛】本题考查了圆的性质,等边三角形的判定和面积公式,属于简单题,作辅助线证明等边三角形是解题关键.16、【分析】由抛物线y=x2+2kx﹣6可得抛物线开口方向向上,根据抛物线与x轴有两个交点且这两个交点分别在直线x=2的两侧可得:当x=2时,抛物线在x轴下方,即y<1.【详解】解:∵y=x2+2kx﹣6与x轴有两个交点,两个交点分别在直线x=2的两侧,∴当x=2时,y<1.∴4+4k﹣6<1解得:k<;∴k的取值范围是k<,故答案为:k<.【点睛】本题主要考查二次函数图象性质,解决本题的关键是要熟练掌握二次函数图象的性质.17、1:3【分析】根据中位线的定义可得:DE为△ABC的中位线,再根据中位线的性质可得DE∥AB,且,从而证出△CDE∽△CAB,根据相似三角形的性质即可求出,从而求出三角形CDE的面积与四边形ABED的面积比.【详解】解:∵D,E分别是AC,BC边上的中点,∴DE为△ABC的中位线∴DE∥AB,且∴△CDE∽△CAB∴∴故答案为:1:3.【点睛】此题考查的是中位线的性质和相似三角形的判定及性质,掌握中位线的性质、用平行证相似和相似三角形的面积比等于相似比的平方是解决此题的关键.18、4【分析】由=可得,代入计算即可.【详解】解:∵=,∴,则故答案为:4.【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.三、解答题(共66分)19、(1);(2)【分析】(1)直接根据概率公式计算可得;

(2)画树状图得出所有等可能结果,再从中找到符合条件的结果数,利用概率公式计算可得.【详解】解:(1)因为7,11,19,23共有4个数,其中素数7只有1个,

所以从7,11,19,23中随机抽取1个素数,则抽到的素数是7的概率是,

故答案为.(2)由题意画树状图如下:由树状图可知,共有12种等可能的结果,其中抽到的两个素数之和大于等于30的结果有8种,故所求概率【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.20、(1);(2)【分析】(1)根据小刚从印有数字1,3,4的三个小球中摸出印有数字3的小球进行求解概率;(2)根据题意画出树状图,进而求解.【详解】解:(1)由题意知,小刚摸出的小球上的数字是3的概率为;(2)画树状图如下:一共有12种等可能情况,有三种情况满足条件,分别为:,,,∴点在函数的图象上的概率为.【点睛】本题考查等可能条件下的概率计算公式,画树状图或列表求解概率,熟知画树状图或列表法是解题的关键.21、(1)见解析;(2)【分析】(1)连接OC,根据三角形的内角和得到∠EDC+∠ECD=90°,根据等腰三角形的性质得到∠A=∠ACO,得到∠OCD=90°,于是得到结论;

(2)根据已知条件得到OC=OB=AB=2,根据勾股定理即可得到结论.【详解】(1)证明:连接OC,

∵DE⊥AE,

∴∠E=90°,

∴∠EDC+∠ECD=90°,

∵∠A=∠CDE,

∴∠A+∠DCE=90°,

∵OC=OA,

∴∠A=∠ACO,

∴∠ACO+∠DCE=90°,

∴∠OCD=90°,

∴OC⊥CD,

∴CD是⊙O的切线;

(2)解:∵AB=4,BD=3,

∴OC=OB=AB=2,

∴OD=2+3=5,

∴CD===.【点睛】本题考查了切线的判定和性质,勾股定理,等腰三角形的性质,平角的定义,熟练掌握切线的判定定理是解题的关键.22、,.【解析】分析:用配方法解一元二次方程即可.还可以用公式法或者因式分解法.详解:方法一:移项,得,二次项系数化为1,得,,,由此可得,,.方法二:方程整理得:分解因式得:(x−1)(2x−1)=0,解得:,.点睛:考查解一元二次方程,常见的方法有:直接开方法,配方法,公式法和因式分解法,观察题目选择合适的方法.23、(1)见解析;(2),【分析】(1)欲证直线是的切线,需连接OD,证∠EDO=90°,根据题意,利用平行线的性质即可证得;(2)先构造直角三角形,需要连接AD,利用三角形的面积法来求出DE的长,再在Rt△ADC中来求.【详解】(1)证明:如图,连接.为的中点,为的中点,又..是圆的切线(2)解:连.是直径,.为的中点,在中在中由面积法可知即在中.【点睛】本题考查了切线的判定定理及直角三角形直角边与斜边的关系,证明圆的切线的问题常用的思路是根据利用切线的判定定理转化成证垂直的问题;求线段长和三角函数值一般应构造相应的直角三角形.24、x1=1+,x2=1﹣.【解析】利用完全平方公式配平方,再

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论