2023-2024学年郑州市外国语中学数学九上期末质量检测试题含解析_第1页
2023-2024学年郑州市外国语中学数学九上期末质量检测试题含解析_第2页
2023-2024学年郑州市外国语中学数学九上期末质量检测试题含解析_第3页
2023-2024学年郑州市外国语中学数学九上期末质量检测试题含解析_第4页
2023-2024学年郑州市外国语中学数学九上期末质量检测试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年郑州市外国语中学数学九上期末质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,AB是⊙O的弦(AB不是直径),以点A为圆心,以AB长为半径画弧交⊙O于点C,连结AC、BC、OB、OC.若∠ABC=65°,则∠BOC的度数是()A.50° B.65° C.100° D.130°2.如图,点O为△ABC的外心,点I为△ABC的内心,若∠BOC=140°,则∠BIC的度数为()A.110° B.125° C.130° D.140°3.以下五个图形中,是中心对称图形的共有()A.2个 B.3个 C.4个 D.5个4.若一个扇形的圆心角是45°,面积为,则这个扇形的半径是()A.4 B. C. D.5.微信红包是沟通人们之间感情的一种方式,已知小明在2016年”元旦节”收到微信红包为300元,2018年为363元,若这两年小明收到的微信红包的年平均增长率为x,根据题意可列方程为(

)A.363(1+2x)=300 B.300(1+x2)=363C.300(1+x)2=363 D.300+x2=3636.抛物线y=ax2+bx+c图像如图所示,则一次函数y=-bx-4ac+b2与反比例函数在同一坐标系内的图像大致为()A. B. C. D.7.在平面直角坐标系中,点所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.一元二次方程的解是()A.或 B. C. D.9.若二次函数的x与y的部分对应值如下表,则当时,y的值为xy353A.5 B. C. D.10.下列命题中,为真命题的是()A.同位角相等 B.相等的两个角互为对顶角C.若a2=b2,则a=b D.若a>b,则﹣2a<﹣2b11.如图,在平面直角坐标系中,梯形OACB的顶点O是坐标原点,OA边在y轴正半轴上,OB边在x轴正半轴上,且OA∥BC,双曲线y=(x>0)经过AC边的中点,若S梯形OACB=4,则双曲线y=的k值为()A.5 B.4 C.3 D.212.若一元二次方程x2+2x+a=0有实数解,则a的取值范围是()A.a<1 B.a≤4 C.a≤1 D.a≥1二、填空题(每题4分,共24分)13.已知点,在二次函数的图象上,若,则__________.(填“”“”“”)14.如图,⊙O的半径为4,点B是圆上一动点,点A为⊙O内一定点,OA=4,将AB绕A点顺时针方向旋转120°到AC,以AB、BC为邻边作▱ABCD,对角线AC、BD交于E,则OE的最大值为_____.15.圆弧形蔬菜大棚的剖面如图,已知AB=16m,半径OA=10m,OC⊥AB,则中柱CD的高度为_________m.16.若是方程的一个根,则代数式的值等于______.17.如图,反比例函数的图象与矩形相较于两点,若是的中点,,则反比例函数的表达式为__________.18.已知,则的值为______.三、解答题(共78分)19.(8分)某商店销售一种商品,经市场调查发现:该商品的月销售量y(件)是售价x(元/件)的一次函数,其售价x、月销售量y、月销售利润w(元)的部分对应值如下表:售价x(元/件)4045月销售量y(件)300250月销售利润w(元)30003750注:月销售利润=月销售量×(售价-进价)(1)①求y关于x的函数表达式;②当该商品的售价是多少元时,月销售利润最大?并求出最大利润;(2)由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过40元/件,该商店在今后的销售中,月销售量与售价仍然满足(1)中的函数关系.若月销售最大利润是2400元,则m的值为.20.(8分)如图,点O为∠ABC的边上的一点,过点O作OM⊥AB于点,到点的距离等于线段OM的长的所有点组成图形.图形W与射线交于E,F两点(点在点F的左侧).(1)过点作于点,如果BE=2,,求MH的长;(2)将射线BC绕点B顺时针旋转得到射线BD,使得∠,判断射线BD与图形公共点的个数,并证明.21.(8分)内接于⊙,是直径,,点在⊙上.(1)如图,若弦交直径于点,连接,线段是点到的垂线.①问的度数和点的位置有关吗?请说明理由.②若的面积是的面积的倍,求的正弦值.(2)若⊙的半径长为,求的长度.22.(10分)已知二次函数.(1)求证:不论m取何值,该函数图像与x轴一定有两个交点;(2)若该函数图像与x轴的两个交点为A、B,与y轴交于点C,且点A坐标(2,0),求△ABC面积.23.(10分)如图,正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,连接AF,求∠OFA的度数24.(10分)阅读下列材料后,用此方法解决问题.解方程:.解:∵时,左边右边.∴是方程的一个解.可设则:∴∴∴又∵可分解为∴方程的解满足或或.∴或或.(1)解方程;(2)若和是关于的方程的两个解,求第三个解和,的值.25.(12分)随着中央电视台《朗读者》节目的播出,“朗读”为越来越多的同学所喜爱,西宁市某中学计划在全校开展“朗读”活动,为了了解同学们对这项活动的参与态度,随机对部分学生进行了一次调查,调查结果整理后,将这部分同学的态度划分为四个类别:.积极参与,.一定参与,.可以参与,.不参与.根据调查结果制作了如下不完整的统计表和统计图.学生参与“朗读”的态度统计表类别人数所占百分比18204合计请你根据以上信息,解答下列问题:(1)______,______,并将条形统计图补充完整;(2)该校有1500名学生,如果“不参与”的人数不超过150人时,“朗读”活动可以顺利开展,通过计算分析这次活动能否顺利开展?(3)“朗读”活动中,九年级一班比较优秀的四名同学恰好是两男两女,从中随机选取两人在班级进行朗读示范,试用画树状图法或列表法求所选两人都是女生的概率,并列出所有等可能的结果.26.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,DE⊥AD交AB于E,EF∥BC交AC于F.(1)求证:△ACD∽△ADE;(2)求证:AD2=AB•AF;(3)作DG⊥BC交AB于G,连接FG,若FG=5,BE=8,直接写出AD的长.

参考答案一、选择题(每题4分,共48分)1、C【分析】直接根据题意得出AB=AC,进而得出∠A=50°,再利用圆周角定理得出∠BOC=100°.【详解】解:由题意可得:AB=AC,

∵∠ABC=65°,

∴∠ACB=65°,

∴∠A=50°,

∴∠BOC=100°,

故选:C.【点睛】本题考查圆心角、弧、弦的关系.2、B【解析】解:∵点O为△ABC的外心,∠BOC=140°,∴∠A=70°,∴∠ABC+∠ACB=110°,∵点I为△ABC的内心,∴∠IBC+∠ICB=55°,∴∠BIC=125°.故选B.3、B【分析】根据中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,进行判断.【详解】解:从左起第2、4、5个图形是中心对称图形.故选:B.【点睛】本题考查了中心对称的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.4、A【分析】根据扇形面积公式计算即可.【详解】解:设扇形的半径为为R,由题意得,解得R=4.故选A.【点睛】本题考查了扇形的面积公式,R是扇形半径,n是弧所对圆心角度数,π是圆周率,L是扇形对应的弧长.那么扇形的面积为:.5、C【分析】这两年小明收到的微信红包的年平均增长率为x,则2017年收到300(1+x),2018年收到300(1+x)2,根据题意列方程解答即可.【详解】由题意可得,300(1+x)2=363.故选C.【点睛】本题考查了一元二次方程的应用---增长率问题;本题的关键是掌握增长率问题中的一般公式为a(1+x)n

=b,其中n为共增长了几年,a为第一年的原始数据,b是增长后的数据,x是增长率.6、D【详解】解:由二次函数y=ax2+bx+c的图象开口向上可知,a>0,因为图象与y轴的交点在y轴的负半轴,所以c<0,根据函数图象的对称轴x=﹣>0,可知b<0根据函数图象的顶点在x轴下方,可知∴4ac-b2<0有图象可知f(1)<0∴a+b+c<0∵a>0,b<0,c<0,ac<0,4ac-b2<0,a+b+c<0∴一次函数y=-bx-4ac+b2的图象过一、二、三象限,故可排除B、C;∴反比例函数的图象在二、四象限,可排除A选项.故选D考点:函数图像性质7、D【分析】根据各象限内点的坐标特征进行判断即可得.【详解】因则点位于第四象限故选:D.【点睛】本题考查了平面直角坐标系象限的性质,象限的符号规律:第一象限、第二象限、第三象限、第四象限,熟记象限的性质是解题关键.8、A【解析】方程利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【详解】解:方程x(x-1)=0,

可得x=0或x-1=0,

解得:x=0或x=1.

故选:A.【点睛】此题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键.9、D【分析】由表可知,抛物线的对称轴为,顶点为,再用待定系数法求得二次函数的解析式,再把代入即可求得y的值.【详解】设二次函数的解析式为,当或时,,由抛物线的对称性可知,,,把代入得,,二次函数的解析式为,当时,.故选D.【点睛】本题考查了待定系数法求二次函数的解析式,抛物线是轴对称图形,由表看出抛物线的对称轴为,顶点为,是本题的关键.10、D【解析】根据同位角、对顶角和等式以及不等式的性质,逐一判断选项,即可.【详解】A、两直线平行,同位角相等,原命题是假命题;B、相等的两个角不一定互为对顶角,原命题是假命题;C、若a2=b2,则a=b或a=﹣b,原命题是假命题;D、若a>b,则﹣2a<﹣2b,是真命题;故选:D.【点睛】本题主要考查真假命题的判断,熟练掌握常用的公理,定理,推论和重要结论,是解题的关键.11、D【分析】过的中点作轴交轴于,交于,作轴于,如图,先根据“”证明,则,得到,再利用得到,然后根据反比例函数系数的几何意义得,再去绝对值即可得到满足条件的的值.【详解】过的中点作轴交轴于,交于,作轴于,如图,在和中,,(),,,,,,而,.故选:.【点睛】本题考查了反比例函数系数的几何意义:从反比例函数图象上任意一点向轴于轴作垂线,垂线与坐标轴所围成的矩形面积为.12、C【分析】根据一元二次方程的根的判别式列不等式求解.【详解】解:∵方程有实数根∴△=4-4a≥0,解得a≤1故选C.【点睛】本题考查一元二次方根的判别式,熟记公式正确计算是本题的解题关键.二、填空题(每题4分,共24分)13、【解析】抛物线的对称轴为:x=1,∴当x>1时,y随x的增大而增大.∴若x1>x2>1

时,y1>y2

.故答案为>14、2+2【分析】如图,构造等腰△OAF,使得AO=AF,∠OAF=120°,连接CF,OB,取AF的中点J,连接EJ.证明EJ是定值,可得点E的运动轨迹是以J为圆心,EJ为半径的圆,由此即可解决问题.【详解】如图,构造等腰△OAF,使得AO=AF,∠OAF=120°,连接CF,OB,取AF的中点J,连接EJ.∵∠BAC=∠OAF=120°,∴∠BAO=∠CAF,∵ABAC,AO=AF,∴△OAB≌△FAC(SAS),∴CF=OB=,∵四边形BCDA是平行四边形,∴AE=EC,∵AJ=JF,∴EJ=CF=,∴点E的运动轨迹是以J为圆心,EJ为半径的圆,易知OJ=当点E在OJ的延长线上时,OE的值最大,最大值为OJ+JE=,故答案为2+2.【点睛】本题考查的是圆的综合,难度较大,解题关键是找出EJ是最大值.15、4【分析】根据垂径定理可得AD=AB,然后由勾股定理可得OD的长,继而可得CD的高求解.【详解】解:∵CD垂直平分AB,∴AD=1.∴OD==6m,∴CD=OC−OD=10−6=4(m).故答案是:4【点睛】本题考查垂径定理和勾股定理的实际应用,掌握这些知识点是解题关键.16、1【分析】把代入已知方程,求得,然后得的值即可.【详解】解:把代入已知方程得,∴,故答案为1.【点睛】本题考查一元二次方程的解以及代数式求值,注意已知条件与待求代数式之间的关系.17、【分析】设D(a,),则B纵坐标也为,代入反比例函数的y=,即可求得E的横坐标,则根据三角形的面积公式即可求得k的值.【详解】解:设D(a,),则B纵坐标也为,∵D是AB中点,∴点E横坐标为2a,代入解析式得到纵坐标:,∵BE=BCEC=,∴E为BC的中点,S△BDE=,∴k=1.∴反比例函数的表达式为;故答案是:.【点睛】本题考查了反比例函数的性质,以及三角形的面积公式,正确表示出BE的长度是关键.18、【分析】设=k,用k表示出a、b、c,代入求值即可.【详解】解:设=k,∴a=2k,b=3k,c=4k,∴==.故答案是:.【点睛】本题考查了比例的性质,涉及到连比时一般假设比值为k,这是常用的方法.三、解答题(共78分)19、(1)①y=-10x+700;②当该商品的售价是50元/件时,月销售利润最大,最大利润是4000元.(1)1.【分析】(1)①将点(40,300)、(45,150)代入一次函数表达式:y=kx+b即可求解;②设该商品的售价是x元,则月销售利润w=y(x-30),求解即可;(1)根据进价变动后每件的利润变为[x-(m+30)]元,用其乘以月销售量,得到关于x的二次函数,求得对称轴,判断对称轴大于50,由开口向下的二次函数的性质可知,当x=40时w取得最大值1400,解关于m的方程即可.【详解】(1)①解:设y=kx+b(k,b为常数,k≠0)根据题意得:,解得:∴y=-10x+700②解:当该商品的进价是40-3000÷300=30元设当该商品的售价是x元/件时,月销售利润为w元根据题意得:w=y(x-30)=(x-30)(-10x+700)=-10x1+1000x-11000=-10(x-50)1+4000∴当x=50时w有最大值,最大值为4000答:当该商品的售价是50元/件时,月销售利润最大,最大利润是4000元.(1)由题意得:

w=[x-(m+30)](-10x+700)

=-10x1+(1000+10m)x-11000-700m

对称轴为x=50+

∵m>0

∴50+>50

∵商家规定该运动服售价不得超过40元/件

∴由二次函数的性质,可知当x=40时,月销售量最大利润是1400元

∴-10×401+(1000+10m)×40-11000-700m=1400

解得:m=1

∴m的值为1.【点睛】本题考查了待定系数法求一次函数的解析式及二次函数在实际问题中的应用,正确列式并明确二次函数的性质,是解题的关键.20、(1)MH=;(2)1个.【分析】(1)先根据题意补全图形,然后利用锐角三角函数求出圆的半径即OM的长度,再利用勾股定理求出BM的长度,最后利用可求出MH的长度.(2)过点O作⊥于点,通过等量代换可知∠∠,从而利用角平分线的性质可知,得出为⊙的切线,从而可确定公共点的个数.【详解】解:(1)∵到点的距离等于线段的长的所有点组成图形,∴图形是以为圆心,的长为半径的圆.根据题意补全图形:∵于点M,∴∠.在△中,,∴.∵∴,解得:.∴.在△中,,∴.∵∴∴.(2)解:1个.证明:过点O作⊥于点,∵∠∠,且∠∠,∴∠∠.∴.∴为⊙的切线.∴射线与图形的公共点个数为1个.【点睛】本题主要考查解直角三角形和直线与圆的位置关系,掌握圆的相关性质,勾股定理和角平分线的性质是解题的关键.21、(1)没有关系,∠CDF=∠CAB=60°;(2);(3)或【解析】(1)①根据同弧所对的圆周角解答即可;②利用锐角三角函数的定义求出AC与BC、DF与CF的关系,利用三角形的面积公式得出,然后根据正弦的定义可求出的正弦值;(2)分两种情况求解:①当D点在直径AB下方的圆弧上时;当D点在直径AB上方的圆弧上时.【详解】解:(1)①没有关系,理由如下:当D在直径AB的上方时,如下图,∵AB为直径,∴∠ACB=90°;∵∠ABC=30°,∴∠CAB=60°;∴∠CDF=∠CAB=60°;当D在直径AB的下方时,如下图∵∠CAB=60°,∴∠CDB=180°-∠CAB=120°,∴∠CDF=60°.②∵CF⊥BD,AB为直径;∴∠ACB=∠CFD=90°;由①得,∠CDF=∠CAB=60°,∴;;∵;;∴;∴(2)∵半径为2,,∴弧CD所对圆心角①当D点在直径AB下方的圆弧上时;如图,连结OD,过D作DE⊥AB于E;由(1)知,,∴;∴;OD=2,∴,,;∴;②当D点在直径AB上方的圆弧上时,如图,连结OD,过D作DF⊥AB于F;此时;∴,,;∴;综上所述:BD的长为或.【点睛】本题考查了圆周角定理的推论,锐角三角函数的定义,勾股定理及其逆定理的应用,以及分类讨论的数学思想,分类讨论是解答本题的关键.22、(1)见解析;(2)10【分析】(1)令y=0得到关于x的二元一次方程,然后证明△=b2−4ac>0即可;(2)令y=0求出抛物线与x轴的交点坐标,根据坐标的特点即可解题.【详解】(1)因为=,且,所以.所以该函数的图像与x轴一定有两个交点.(2)将A(-1,0)代入函数关系式,得,,解得m=3,求得点B、C坐标分别为(4,0)、(0,-4).所以△ABC面积=[4-(-1)]×4×0.5=10【点睛】本题主要考查的是抛物线与x轴的交点、二次函数的性质,将函数问题转化为方程问题是解答问题(1)的关键,求出抛物线与x轴的交点坐标是解答问题(2)的关键.23、25°【分析】先利用正方形的性质得OA=OC,∠AOC=90°,再根据旋转的性质得OC=OF,∠COF=40°,则OA=OF,根据等腰三角形的性质得∠OAF=∠OFA,然后根据三角形的内角和定理计算∠OFA的度数.【详解】解:∵四边形OABC为正方形,∴OA=OC,∠AOC=90°,∵正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,∴OC=OF,∠COF=40°,∴OA=OF,∴∠OAF=∠OFA,∵∠AOF=∠AOC+∠COF=90°+40°=130°,∴∠OFA=(180°-130°)=25°.故答案为25°.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.24、(1)或或;(2)第三个解为,,.【分析】(1)模仿材料可得:是的一个解.可设,=,求出m,n再因式分解求解;(2)由和是方程的两个解,可设,则:=,求出k,再因式分解解方程.【详解】解:(1)∵时,左边==0=右边,∴是的一个解.可设∴=∴∴∴=∴或或.∴方程的解为或或.(2)∵和是方程的两个解∴可设,则:==∴∴∴=0∴或或.∴方程的解为或或.∴第三个解为,,.【点睛】考核知识点:因式分解高次方程.理解材料,熟练掌握整式乘法和因式分解方法是关键.25、(1),8,补图详见解析;(2)这次活动能顺利开展;(3)(两人都是女生)【分析】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论