2023年广东省佛山顺德区五校联考数学九年级第一学期期末达标检测试题含解析_第1页
2023年广东省佛山顺德区五校联考数学九年级第一学期期末达标检测试题含解析_第2页
2023年广东省佛山顺德区五校联考数学九年级第一学期期末达标检测试题含解析_第3页
2023年广东省佛山顺德区五校联考数学九年级第一学期期末达标检测试题含解析_第4页
2023年广东省佛山顺德区五校联考数学九年级第一学期期末达标检测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年广东省佛山顺德区五校联考数学九年级第一学期期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,随意向水平放置的大⊙O内部区域抛一个小球,则小球落在小⊙O内部(阴影)区域的概率为()A. B. C. D.2.如图,是函数的图像上关于原点对称的任意两点,轴,轴,的面积记为,则()A. B. C. D.3.如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()A.120° B.130° C.140° D.150°4.如图,为测量一棵与地面垂直的树OA的高度,在距离树的底端30米的B处,测得树顶A的仰角∠ABO为α,则树OA的高度为()A.米 B.30sinα米 C.30tanα米 D.30cosα米5.在同一直角坐标系中,函数与y=ax+1(a≠0)的图象可能是()A. B.C. D.6.把两条宽度都为的纸条交叉重叠放在一起,且它们的交角为,则它们重叠部分(图中阴影部分)的面积为().A. B.C. D.7.已知平面直角坐标系中,点关于原点对称的点的坐标是()A. B. C. D.8.二次函数y=ax2+bx+c的部分对应值如表:利用该二次函数的图象判断,当函数值y>0时,x的取值范围是()A.0<x<8 B.x<0或x>8 C.﹣2<x<4 D.x<﹣2或x>49.如图,BA=BC,∠ABC=80°,将△BDC绕点B逆时针旋转至△BEA处,点E,A分别是点D,C旋转后的对应点,连接DE,则∠BED为()A.50° B.55° C.60° D.65°10.已知圆心O到直线l的距离为d,⊙O的半径r=6,若d是方程x2–x–6=0的一个根,则直线l与圆O的位置关系为()A.相切 B.相交C.相离 D.不能确定二、填空题(每小题3分,共24分)11.如图,在菱形中,边长为10,.顺次连结菱形各边中点,可得四边形;顺次连结四边形各边中点,可得四边形;顺次连结四边形各边中点,可得四边形;按此规律继续下去….则四边形的周长是_________.12.如图,在中,,为边上一点,已知,,,则____________.13.一个直角三角形的两直角边长分别为和,则这个直角三角形的面积是_____cm1.14.飞机着陆后滑行的距离y(m)关于滑行时间t(s)的函数关系式是y=60t-t2,在飞机着陆滑行中,最后2s滑行的距离是______m15.cos30°+sin45°+tan60°=_____.16.点A(-1,m)和点B(-2,n)都在抛物线上,则m与n的大小关系为m______n(填“”或“”).17.分解因式:=__________18.二次函数的图象如图所示,若点,是图象上的两点,则____(填“>”、“<”、“=”).三、解答题(共66分)19.(10分)汽车产业的发展,有效促进我国现代建设.某汽车销售公司2007年盈利3000万元,到2009年盈利4320万元,且从2007年到2009年,每年盈利的年增长率相同,该公司2008年盈利多少万元?20.(6分)如图,一次函数y=kx+b与反比例函数y=的图象交于A(2,3),B(﹣3,n)两点.(1)求反比例函数的解析式;(2)过B点作BC⊥x轴,垂足为C,若P是反比例函数图象上的一点,连接PC,PB,求当△PCB的面积等于5时点P的坐标.21.(6分)如图,小明欲测量一座古塔的高度,他拿出一根竹杆竖直插在地面上,然后自己退后,使眼睛通过竹杆的顶端刚好看到塔顶,若小明眼睛离地面,竹标顶端离地面,小明到竹杆的距离,竹杆到塔底的距离,求这座古塔的高度.22.(8分)如图,以矩形ABCD的边CD为直径作⊙O,点E是AB的中点,连接CE交⊙O于点F,连接AF并延长交BC于点H.(1)若连接AO,试判断四边形AECO的形状,并说明理由;(2)求证:AH是⊙O的切线;(3)若AB=6,CH=2,则AH的长为.23.(8分)如图1,在矩形ABCD中,AE⊥BD于点E.(1)求证:BEBC=AECD.(2)如图2,若点P是边AD上一点,且PE⊥EC,求证:AEAB=DEAP.24.(8分)如图,在△ABC中,∠ACB=90º,∠ABC=45º,点O是AB的中点,过A、C两点向经过点O的直线作垂线,垂足分别为E、F.(1)如图①,求证:EF=AE+CF.(2)如图②,图③,线段EF、AE、CF之间又有怎样的数量关系?请直接写出你的猜想.25.(10分)如图,在平面直角坐标系中,点A、B的坐标分别是(0,3)、(-4,0).(1)将△AOB绕点A逆时针旋转90°得到△AEF,点O、B对应点分别是E、F,请在图中面出△AEF;(2)以点O为位似中心,将三角形AEF作位似变换且缩小为原来的在网格内画出一个符合条件的26.(10分)如图,在长为32m,宽为20m的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪,要使道路的面积比草坪面积少440.(1)求草坪面积;(2)求道路的宽.

参考答案一、选择题(每小题3分,共30分)1、B【分析】针扎到内切圆区域的概率就是内切圆的面积与外切圆面积的比.【详解】解:∵如图所示的正三角形,∴∠CAB=60°,∴∠OAB=30°,∠OBA=90°,设OB=a,则OA=2a,则小球落在小⊙O内部(阴影)区域的概率为.故选:B.【点睛】本题考查了概率问题,掌握圆的面积公式是解题的关键.2、A【分析】根据反比例函数图象上的点A、B关于原点对称,可以写出它们的坐标,则△ABC的面积即可求得.【详解】解:设A(x₁,y₁),根据题意得B(-x₁,-y₁),BC=2x₁,AC=2y₁∵A在函数的图像上∴x₁y₁=1

故选:

A【点睛】本题考查的是反比例函数的性质.3、C【解析】试题分析:如图,延长AC交EF于点G;∵AB∥EF,∴∠DGC=∠BAC=50°;∵CD⊥EF,∴∠CDG=90°,∴∠ACD=90°+50°=140°,故选C.考点:垂线的定义;平行线的性质;三角形的外角性质4、C【解析】试题解析:在Rt△ABO中,∵BO=30米,∠ABO为α,∴AO=BOtanα=30tanα(米).故选C.考点:解直角三角形的应用-仰角俯角问题.5、B【分析】本题可先由反比例函数图象得到字母a的正负,再与一次函数y=ax+1的图象相比较看是否一致即可解决问题.【详解】解:A、由函数的图象可知a>0,由y=ax+1(a≠0)的图象可知a<0故选项A错误.B、由函数的图象可知a>0,由y=ax+1(a≠0)的图象可知a>0,且交于y轴于正半轴,故选项B正确.C、y=ax+1(a≠0)的图象应该交于y轴于正半轴,故选项C错误.D、由函数的图象可知a<0,由y=ax+1(a≠0)的图象可知a>0,故选项D错误.故选:B.【点睛】本题考查反比例函数的图象、一次函数的图象等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.6、A【分析】如图,过A作AE⊥BC于E,AF⊥CD于F,垂足为E,F,证明△ABE≌△ADF,从而证明四边形ABCD是菱形,再利用三角函数算出BC的长,最后根据菱形的面积公式算出重叠部分的面积即可.【详解】解:如图所示:过A作AE⊥BC于E,AF⊥CD于F,垂足为E,F,

∴∠AEB=∠AFD=90°,

∵AD∥CB,AB∥CD,

∴四边形ABCD是平行四边形,

∵纸条宽度都为1,

∴AE=AF=1,

在△ABE和△ADF中,

∴△ABE≌△ADF(AAS),

∴AB=AD,

∴四边形ABCD是菱形.

∴BC=AB,

∵=sinα,

∴BC=AB=,

∴重叠部分(图中阴影部分)的面积为:BC×AE=1×=.

故选:A.【点睛】本题考查菱形的判定与性质,以及三角函数的应用,关键是证明四边形ABCD是菱形,利用三角函数求出BC的长.7、C【解析】∵在平面直角坐标系中,关于原点对称的两个点的横坐标与横坐标、纵坐标与纵坐标都互为相反数,∴点P(1,-2)关于原点的对称点坐标为(-1,2),故选C.8、C【分析】观察表格得出抛物线顶点坐标是(1,9),对称轴为直线x=1,而当x=-2时,y=0,则抛物线与x轴的另一交点为(1,0),由表格即可得出结论.【详解】由表中的数据知,抛物线顶点坐标是(1,9),对称轴为直线x=1.当x<1时,y的值随x的增大而增大,当x>1时,y的值随x的增大而减小,则该抛物线开口方向向上,所以根据抛物线的对称性质知,点(﹣2,0)关于直线直线x=1对称的点的坐标是(1,0).所以,当函数值y>0时,x的取值范围是﹣2<x<1.故选:C.【点睛】本题考查了二次函数与x轴的交点、二次函数的性质等知识,解答本题的关键是要认真观察,利用表格中的信息解决问题.9、A【分析】首先根据旋转的性质,得出∠CBD=∠ABE,BD=BE;其次结合图形,由等量代换,得∠EBD=∠ABC;最后根据等腰三角形的性质,得出∠BED=∠BDE,利用三角形内角和定理求解即可.【详解】∵△BDC绕点B逆时针旋转至△BEA处,点E,A分别是点D,C旋转后的对应点,∴∠CBD=∠ABE,BD=BE,∵∠ABC=∠CBD+∠ABD,∠EBD=∠ABE+∠ABD,∠ABC=80°,∴∠EBD=∠ABC=80°,∵BD=BE,∴∠BED=∠BDE=(180°-∠EBD)=(180°-80°)=50°,故选:A.【点睛】本题主要考查了旋转的性质、等腰三角形的性质,以及三角形内角和定理.解题的关键是根据旋转的性质得出旋转前后的对应角、对应边分别相等,利用等腰三角形的性质得出“等边对等角”,再结合三角形内角和定理,即可得解.10、B【分析】先解方程求得d,根据圆心到直线的距离d与圆的半径r之间的关系即可解题.【详解】解方程:x2–x–6=0,即:,解得,或(不合题意,舍去),

当时,,则直线与圆的位置关系是相交;故选:B【点睛】本题考查了直线与圆的位置关系,只要比较圆心到直线的距离和半径的大小关系.没有交点,则;一个交点,则;两个交点,则.二、填空题(每小题3分,共24分)11、【分析】根据菱形的性质,三角形中位线的性质以及勾股定理求出四边形各边长,得出规律求出即可.【详解】∵菱形ABCD中,边长为10,∠A=60°,设菱形对角线交于点O,∴,∴,,∴,,顺次连结菱形ABCD各边中点,

∴△AA1D1是等边三角形,四边形A2B2C2D2是菱形,

∴A1D1=AA1=AB=5,C1D1=AC=5,A2B2=C2D2=C2B2=A2D2=AB=5,∴四边形A2B2C2D2的周长是:5×4=20,

同理可得出:A3D3=5×,C3D3=C1D1=5,A5D5=5,C5D5=C3D3=5,∴四边形A2019B2019C2019D2019的周长是:故答案为:【点睛】本题主要考查了菱形的性质以及矩形的性质和中点四边形的性质等知识,根据已知得出边长变化规律是解题关键.12、【分析】由题意直接根据特殊三角函数值,进行分析计算即可得出答案.【详解】解:∵在中,,,,∴,∴,∵,∴,∴.故答案为:.【点睛】本题考查锐角三角函数,熟练掌握三角函数定义以及特殊三角函数值进行分析是解题的关键.13、【分析】本题可利用三角形面积×底×高,直接列式求解.【详解】∵直角三角形两直角边可作为三角形面积公式中的底和高,∴该直角三角形面积.故填:.【点睛】本题考查三角形面积公式以及二次根式的运算,难度较低,注意计算仔细即可.14、6【分析】先求出飞机停下时,也就是滑行距离最远时,s最大时对应的t值,再求出最后2s滑行的距离.【详解】由题意,y=60t-t2,=−(t−20)2+600,即当t=20秒时,飞机才停下来.∴当t=18秒时,y=−(18−20)2+600=594m,故最后2s滑行的距离是600-594=6m故填:6.【点睛】本题考查了二次函数的应用.解题时,利用配方法求得t=20时,s取最大值,再根据题意进行求解.15、【分析】根据特殊角的三角函数值、二次根式的化简进行计算,在计算时,需要针对每个考点分别进行计算,然后求得计算结果.【详解】cos30°+sin45°+tan60°===故填:.【点睛】解决此类题目的关键是熟记特殊角的三角函数值.16、<.【解析】试题解析:当时,当时,故答案为:17、【解析】分解因式的方法为提公因式法和公式法及分组分解法.原式==a(3+a)(3-a).18、>【分析】利用函数图象可判断点,都在对称轴右侧的抛物线上,然后根据二次函数的性质可判断与的大小.【详解】解:∵抛物线的对称轴在y轴的左侧,且开口向下,∴点,都在对称轴右侧的抛物线上,∴>.故答案为>.【点睛】本题考查二次函数图象上点的坐标特征,二次函数的性质.解决本题的关键是判断点A和点B都在对称轴的右侧.三、解答题(共66分)19、2008年盈利3600万元.【分析】设该公司从2007年到2009年,每年盈利的年增长率是x,根据题意列出方程进行求解即可求出年增长率;然后根据2007年的盈利,即可算出2008年的盈利.【详解】解:设每年盈利的年增长率为x,由题意得:3000(1+x)2=4320,解得:,(不合题意,舍去),∴年增长率20%,∴3000×(1+20%)=3600,答:该公司2008年盈利3600万元.【点睛】本题考查了一元二次方程的应用,解题的关键是求出从2007年到2009年,每年盈利的年增长率.20、(1)y=;(2)点P的坐标为(﹣8,﹣),(2,3).【分析】(1)将A坐标代入反比例函数解析式中求出m的值,即可确定出反比例函数解析式;

(2)由B点(-3,n)在反比例函数y=的图象上,于是得到B(-3,-2),求得BC=2,设△PBC在BC边上的高为h,根据三角形的面积公式列方程即可得到结论.【详解】(1)∵反比例函数y=的图象经过点A(2,3),∴m=1.∴反比例函数的解析式是y=;(2)∵B点(﹣3,n)在反比例函数y=的图象上,∴n=﹣2,∴B(﹣3,﹣2),∴BC=2,设△PBC在BC边上的高为h,则BC•h=5,∴h=5,∵P是反比例函数图象上的一点,∴点P的横坐标为:﹣8或2,∴点P的坐标为(﹣8,﹣),(2,3).【点睛】此题考查了一次函数与反比例函数的交点问题,涉及的知识有:待定系数法求函数解析式,坐标与图形性质,一次函数与坐标轴的交点,以及反比例函数的图象与性质,熟练掌握待定系数法是解本题的关键.21、古塔的高度是.【分析】根据题意即可求出EG、GH和CG,再证出,列出比例式,即可求解.【详解】解:∵小明、竹杆、古塔均与地面垂直,∴∵小明眼睛离地面,竹杆顶端离地面∴∵∴,∴即解得:∴答:古塔的高度是.【点睛】此题考查的是相似三角形的应用,掌握相似三角形的判定和性质是解决此题的关键.22、(1)详见解析;(2)详见解析;(3)【分析】(1)根据矩形的性质得到AE∥OC,AE=OC即可证明;(2)根据平行四边形的性质得到∠AOD=∠OCF,∠AOF=∠OFC,再根据等腰三角形的性质得到∠OCF=∠OFC.故可得∠AOD=∠AOF,利用SAS证明△AOD≌△AOF,由ADO=90°得到AH⊥OF,即可证明;(3)根据切线长定理可得AD=AF,CH=FH=2,设AD=x,则AF=x,AH=x+2,BH=x-2,再利用在Rt△ABH中,AH2=AB2+BH2,代入即可求x,即可得到AH的长.【详解】(1)解:连接AO,四边形AECO是平行四边形.∵四边形ABCD是矩形,∴AB∥CD,AB=CD.∵E是AB的中点,∴AE=AB.∵CD是⊙O的直径,∴OC=CD.∴AE∥OC,AE=OC.∴四边形AECO为平行四边形.(2)证明:由(1)得,四边形AECO为平行四边形,∴AO∥EC∴∠AOD=∠OCF,∠AOF=∠OFC.∵OF=OC∴∠OCF=∠OFC.∴∠AOD=∠AOF.∵在△AOD和△AOF中,AO=AO,∠AOD=∠AOF,OD=OF∴△AOD≌△AOF.∴∠ADO=∠AFO.∵四边形ABCD是矩形,∴∠ADO=90°.∴∠AFO=90°,即AH⊥OF.∵点F在⊙O上,∴AH是⊙O的切线.(3)∵HC、FH为圆O的切线,AD、AF是圆O的切线∴AD=AF,CH=FH=2,设AD=x,则AF=x,AH=x+2,BH=x-2,在Rt△ABH中,AH2=AB2+BH2,即(x+2)2=62+(x-2)2,解得x=∴AH=+2=.【点睛】此题主要考查直线与圆的关系,解题法的关键是熟知切线的判定定理与性质,及勾股定理的运用.23、(1)详见解析;(2)详见解析.【分析】(1)根据两角对应相等证,由对应边成比例得比例式,化等积式即可;(2)根据两角对应相等证,由对应边成比例得比例式后化等积式,再由AB=CD进行等量代换即可得结论.【详解】解:(1)∵四边形ABCD是矩形,∴∠ABC=∠C=90°,∵AE⊥BD∴∵∠AEB=∠C=90°(2)又【点睛】本题考查相似三角形的判定及性质,正确找出相似条件是解答此题的关键.24、(1)见解析;(2)图②:EF=AE+CF图③:EF=AE-CF,见解析【分析】(1)连接OC,运用AAS证△AOE≌△OCF即可;(2)按(1)中的方法,连接OC,证明△AOE≌△OCF,即可得出结论【详解】(1)连接OC,∵△ABC是等腰直角三角形,∴∠AOC=90°,AO=CO,∵∠AOE+∠COF=90°,∠EAO+∠AOE=90°,∴∠EAO=∠COF,又∵AO=CO,∠AEO=∠CFO,∴△AOE≌△OCF(A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论