




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年上海市长宁区九年级数学第一学期期末综合测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.下列四个图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.2.如图,在中,,,将绕点按顺时针旋转后得到.此时点在边上,则旋转角的大小为()A. B. C. D.3.若2y-7x=0,则x∶y等于()A.2∶7 B.4∶7 C.7∶2 D.7∶44.如图,⊙O的弦AB垂直平分半径OC,若AB=,则⊙O的半径为()A. B.2 C. D.5.如图,在直角坐标系中,点A是x轴正半轴上的一个定点,点B是双曲线y=(x>0)上的一个动点,当点B的横坐标系逐渐增大时,△OAB的面积将会()A.逐渐变小 B.逐渐增大 C.不变 D.先增大后减小6.用16米长的铝制材料制成一个矩形窗框,使它的面积为9平方米,若设它的一边长为x,根据题意可列出关于x的方程为()A. B. C. D.7.二次函数y=a+bx+c的图象如图所示,则下列关系式错误的是()A.a<0 B.b>0 C.﹣4ac>0 D.a+b+c<08.下列实数:,其中最大的实数是()A.-2020 B. C. D.9.从长度分别为1,3,5,7的四条线段中任选三条作边,能构成三角形的概率为()A. B. C. D.10.如图,△ABC是一张周长为18cm的三角形纸片,BC=5cm,⊙O是它的内切圆,小明用剪刀在⊙O的右侧沿着与⊙O相切的任意一条直线剪下△AMN,则剪下的三角形的周长为()A. B. C. D.随直线的变化而变化二、填空题(每小题3分,共24分)11.如图,是的直径,点和点是上位于直径两侧的点,连结,,,,若的半径是,,则的值是_____________.12.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是__________________________.13.已知二次函数的图象开口向下,且其图象顶点位于第一象限内,请写出一个满足上述条件的二次函数解析式为_____(表示为y=a(x+m)2+k的形式).14.对一批防PM2.5口罩进行抽检,经统计合格口罩的概率是0.9,若这批口罩共有2000只,则其中合格的大约有__只.15.如图,四边形ABCD是边长为4的正方形,若AF=3,E为AB上一个动点,把△AEF沿着EF折叠,得到△PEF,若△BPE为直角三角形,则BP的长度为_____.16.△ABC中,∠C=90°,AC=6,BC=8,则sin∠A的值为__________.17.如图,在平面直角坐标系中,正方形ABCD的面积为20,顶点A在y轴上,顶点C在x轴上,顶点D在双曲线的图象上,边CD交y轴于点E,若,则k的值为______.18.如图,在中,,,把绕点顺时针旋转得到,若点恰好落在边上处,则______°.三、解答题(共66分)19.(10分)如图,在平面直角坐标系xOy中,双曲线与直线y=﹣2x+2交于点A(﹣1,a).⑴求k的值;⑵求该双曲线与直线y=﹣2x+2另一个交点B的坐标.20.(6分)有5张不透明的卡片,除正面上的图案不同外,其他均相同.将这5张卡片背面向上洗匀后放在桌面上.(1)从中随机抽取1张卡片,卡片上的图案是中心对称图形的概率为_____.(2)若从中随机抽取1张卡片后不放回,再随机抽取1张,请用画树状图或列表的方法,求两次所抽取的卡片恰好都是轴对称图形的概率.21.(6分)如图,在中,,求的度数.22.(8分)台州人民翘首以盼的乐清湾大桥于2018年9月28日正式通车,经统计分析,大桥上的车流速度(千米/小时)是车流密度(辆/千米)的函数,当桥上的车流密度达到220辆/千米的时候就造成交通堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米,车流速度为80千米/小时,研究证明:当时,车流速度是车流密度的一次函数.(1)求大桥上车流密度为50/辆千米时的车流速度;(2)在某一交通高峰时段,为使大桥上的车流速度大于60千米/小时且小于80千米/小时,应把大桥上的车流密度控制在什么范围内?(3)车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量车流速度车流密度,求大桥上车流量的最大值.23.(8分)已知在平面直角坐标中,点A(m,n)在第一象限内,AB⊥OA且AB=OA,反比例函数y=的图象经过点A,(1)当点B的坐标为(4,0)时(如图1),求这个反比例函数的解析式;(2)当点B在反比例函数y=的图象上,且在点A的右侧时(如图2),用含字母m,n的代数式表示点B的坐标;(3)在第(2)小题的条件下,求的值.24.(8分)某小区在绿化工程中有一块长为20m,宽为8m的矩形空地,计划在其中修建两块相同的矩形绿地,使它们的面积之和为102m2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),求人行通道的宽度.25.(10分)如图,在平面直角坐标系中,点为坐标原点,每个小方格的边长为个单位长度,在第二象限内有横、纵坐标均为整数的两点,点,点的横坐标为,且.在平面直角坐标系中标出点,写出点的坐标并连接;画出关于点成中心对称的图形.26.(10分)某商店以每件40元的价格进了一批商品,出售价格经过两个月的调整,从每件50元上涨到每件72元,此时每月可售出188件商品.(1)求该商品平均每月的价格增长率;(2)因某些原因,商家需尽快将这批商品售出,决定降价出售.经过市场调查发现:售价每下降一元,每个月多卖出一件,设实际售价为x元,则x为多少元时销售此商品每月的利润可达到4000元.
参考答案一、选择题(每小题3分,共30分)1、A【解析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,是中心对称图形,故此选项正确;
B、是轴对称图形,不是中心对称图形,故此选项错误;
C、不是轴对称图形,不是中心对称图形,故此选项错误;
D、不是轴对称图形,是中心对称图形,故此选项错误;
故选:A.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2、A【分析】根据旋转的性质和三角形的内角和进行角的运算即可得出结果.【详解】解:∵在中,,,∴∠B=59°,∵将绕点按顺时针旋转后得到,∴∠BCD是旋转角,,∴BC=DC,∴∠CDB=∠B=59°,∴∠BCD=180°−∠CDB−∠B=62°,故选A.【点睛】本题考查了旋转的性质和三角形的内角和,解题的关键是找到旋转角并熟练运用旋转的性质求解.3、A【分析】由2y-7x=0可得2y=7x,再根据等式的基本性质求解即可.【详解】解:∵2y-7x=0∴2y=7x∴x∶y=2∶7故选A.【点睛】比例的性质,根据等式的基本性质2进行计算即可,是基础题,比较简单.4、A【解析】试题分析:连接OA,设⊙O的半径为r,由于AB垂直平分半径OC,AB=,则AD=,OD=,在Rt△AOD中,OA2=OD2+AD2,即r2=()2+()2,解得r=.考点:(1)垂径定理;(2)勾股定理.5、A【解析】试题分析:根据反比例函数的性质结合图形易知△OAB的高逐渐减小,再结合三角形的面积公式即可判断.要知△OAB的面积的变化,需考虑B点的坐标变化,因为A点是一定点,所以OA(底)的长度一定,而B是反比例函数图象上的一点,当它的横坐标不断增大时,根据反比例函数的性质可知,函数值y随自变量x的增大而减小,即△OAB的高逐渐减小,故选A.考点:反比例函数的性质,三角形的面积公式点评:本题属于基础应用题,只需学生熟练掌握反比例函数的性质,即可完成.6、B【分析】一边长为x米,则另外一边长为:8-x,根据它的面积为9平方米,即可列出方程式.【详解】一边长为x米,则另外一边长为:8-x,
由题意得:x(8-x)=9,
故选:B.【点睛】此题考查由实际问题抽相出一元二次方程,解题的关键读懂题意列出方程式.7、D【解析】试题分析:根据抛物线的开口方向对A进行判断;根据抛物线的对称轴位置对B进行判断;根据抛物线与x轴的交点个数对C进行判断;根据自变量为1所对应的函数值为正数对D进行判断.A、抛物线开口向下,则a<0,所以A选项的关系式正确;B、抛物线的对称轴在y轴的右侧,a、b异号,则b>0,所以B选项的关系式正确;C、抛物线与x轴有2个交点,则△=b2﹣4ac>0,所以D选项的关系式正确;D、当x=1时,y>0,则a+b+c>0,所以D选项的关系式错误.考点:二次函数图象与系数的关系8、C【解析】根据正数大于0,0大于负数,正数大于负数,比较即可;【详解】∵=-2020,=-2020,=2020,=,∴,故选C.【点睛】本题主要考查了实数大小比较,掌握实数大小比较是解题的关键.9、C【分析】从四条线段中任意选取三条,找出所有的可能,以及能构成三角形的情况数,即可求出所求的概率.【详解】解:从四条线段中任意选取三条,所有的可能有:1,3,5;1,3,7;1,5,7;3,5,7共4种,
其中构成三角形的有3,5,7共1种,∴能构成三角形的概率为:,故选C.点睛:此题考查了列表法与树状图法,以及三角形的三边关系,用到的知识点为:概率=所求情况数与总情况数之比.10、B【分析】如图,设E、F、G分别为⊙O与BC、AC、MN的切点,利用切线长定理得出BC=BD+CF,DM=MG,FN=GN,AD=AF,进而可得答案.【详解】设E、F、G分别为⊙O与BC、AC、MN的切点,∵⊙O是△ABC的内切圆,∴BD=BE,CF=CE,AD=AF,∴BD+CF=BC,∵MN与⊙O相切于G,∴DM=MG,FN=GN,∵△ABC的周长为18cm,BC=5cm,∴AD+AF=18-BC-(BD+CF)=18-2BC=8cm,∴△AMN的周长=AM+AN+MG+GN=AM+DM+AN+FN=AD+AF=8cm,故选:B.【点睛】本题考查切线长定理,从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角;熟练掌握定理是解题关键.二、填空题(每小题3分,共24分)11、【分析】根据题意可知∠ADB=90°,∠ACD=∠ABD,求出∠ABD的正弦就是∠ACD的正弦值.【详解】解:∵是的直径,∴∠ADB=90°∴∠ACD=∠ABD∵的半径是,,∴故答案为:【点睛】本题考查的是锐角三角函数值.12、50(1﹣x)2=1.【解析】由题意可得,50(1−x)²=1,故答案为50(1−x)²=1.13、y=﹣(x﹣1)2+1(答案不唯一)【解析】因为二次函数的顶点坐标为:(-m,k),根据题意图象的顶点位于第一象限,所以可得:m<0,k>0,因此满足m<0,k>0的点即可,故答案为:(答案不唯一).14、1.【分析】用这批口罩的只数×合格口罩的概率,列式计算即可得到合格的只数.【详解】2000×0.9=2000×0.9=1(只).故答案为:1.【点睛】本题主要考查了用样本估计总体,生产中遇到的估算产量问题,通常采用样本估计总体的方法.15、2或.【分析】根据题意可得分两种情况讨论:①当∠BPE=90°时,点B、P、F三点共线,②当∠PEB=90°时,证明四边形AEPF是正方形,进而可求得BP的长.【详解】根据E为AB上一个动点,把△AEF沿着EF折叠,得到△PEF,若△BPE为直角三角形,分两种情况讨论:①当∠BPE=90°时,如图1,点B、P、F三点共线,根据翻折可知:∵AF=PF=3,AB=4,∴BF=5,∴BP=BF﹣PF=5﹣3=2;②当∠PEB=90°时,如图2,根据翻折可知:∠FPE=∠A=90°,∠AEP=90°,AF=FP=3,∴四边形AEPF是正方形,∴EP=3,BE=AB﹣AE=4﹣3=1,∴BP===.综上所述:BP的长为:2或.故答案为:2或.【点睛】本题主要考查了折叠的性质、正方形的性质一勾股定理的应用,熟练掌握相关知识是解题的关键.16、【分析】根据勾股定理及三角函数的定义直接求解即可;【详解】如图,,∴sin∠A,故答案为:【点睛】本题考查了三角函数的定义及勾股定理,熟练掌握三角函数的定义是解题的关键.17、4【分析】过D作DF⊥x轴并延长FD,过A作AG⊥DF于点G,利用正方形的性质易证△ADG≌△DCF,得到AG=DF,设D点横坐标为m,则OF=AG=DF=m,易得OE为△CDF的中位线,进而得到OF=OC,然后利用勾股定理建立方程求出,进而求出k.【详解】如图,过D作DF⊥x轴并延长FD,过A作AG⊥DF于点G,∵四边形ABCD为正方形,∴CD=AD,∠ADC=90°∴∠ADG+∠CDF=90°又∵∠DCF+∠CDF=90°∴∠ADG=∠DCF在△ADG和△DCF中,∵∠AGD=∠DFC=90°,∠ADG=∠DCF,AD=CD∴△ADG≌△DCF(AAS)∴AG=DF设D点横坐标为m,则OF=AG=DF=m,∴D点坐标为(m,m)∵OE∥DF,CE=ED∴OE为△CDF的中位线,∴OF=OC∴CF=2m在Rt△CDF中,∴解得又∵D点坐标为(m,m)∴故答案为:4.【点睛】本题考查反比例函数与几何的综合问题,需要熟练掌握正方形的性质,全等三角形的判定和性质,中位线的判定和性质以及勾股定理,解题的关键是作出辅助线,利用全等三角形推出点D的横纵坐标相等.18、100【分析】作AC与DE的交点为点O,则∠AOD=∠EOC,根据旋转的性质,CD=CB,即∠CDB=∠B=∠EDC=70°,∠B=70°,则∠ADE=180°-2∠B=40°,再由AB=AC可得∠B=∠ACB=70°即A=40°,再根据三角和定理即可得∠AOD=180°-40°-40°=100°,即可解答.【详解】如图,作AC交DE为O则∠AOD=∠EOC根据旋转的性质,CD=CB,∠CDB=∠B=∠EDC=70°,∠B=70°,则∠ADE=180°-2∠B=40°AB=AC∠B=∠ACB=70°∴∠A=40°∠AOD=180°-∠A-∠ADO∠AOD=180°-40°-40°=100°∠AOD=∠EOC∠1=100°【点睛】本题考查旋转的性质,解题突破口是作AC与DE的交点为点O,即∠AOD=∠EOC.三、解答题(共66分)19、(1);(2)B(2,-2)【分析】(1)将A坐标代入一次函数解析式中求得a的值,再将A坐标代入反比例函数解析式中求得m的值;(2)联立解方程组,即可解答.【详解】⑴把点A(-1,a)代入得把点A(-1,4)代入得:⑵解方程组,解得:,∴B(2,-2).【点睛】此题主要考查了反比例函数与一次函数的交点问题,掌握求两函数图象交点的方法是解答的关键,会解方程(组)是解答的基础.20、(1);(2)两次所抽取的卡片恰好都是轴对称图形的概率为.【分析】(1)先判断其中的中心对称图形,再根据概率公式求解即得答案;(2)先画出树状图得到所有可能的情况,再判断两次都是轴对称图形的情况,然后根据概率公式计算即可.【详解】解:(1)中心对称图形的卡片是A和D,所以从中随机抽取1张卡片,卡片上的图案是中心对称图形的概率为,故答案为;(2)轴对称图形的卡片是B、C、E.画树状图如下:由树状图知,共有20种等可能结果,其中两次所抽取的卡片恰好都是轴对称图形的有6种结果,分别是(B,C)、(B,E)、(C,B)、(C,E)、(E,B)、(E,C),∴两次所抽取的卡片恰好都是轴对称图形的概率=.【点睛】本题考查了用画树状图或列表法求两次事件的概率、中心对称图形和轴对称图形的定义等知识,熟知中心对称图形和轴对称图形的定义以及用画树状图或列表法求概率的方法是解题的关键.21、70°【分析】根据等腰三角形的性质和三角形的内角和定理即可求得.【详解】故的度数为.【点睛】本题考查了等腰三角形的性质、三角形的内角和定理,根据等腰三角形的性质:等边对等角得出是解题关键.22、(1)车流速度68千米/小时;(2)应把大桥上的车流密度控制在20千米/小时到70千米/小时之间;(3)车流量y取得最大值是每小时4840辆【分析】(1)设车流速度与车流密度的函数关系式为v=kx+b,列式求出函数解析式,将x=50代入即可得到答案;(2)根据题意列不等式组即可得到答案;(3)分两种情况:、时分别求出y的最大值即可.【详解】(1)设车流速度与车流密度的函数关系式为v=kx+b,由题意,得,解得,∴当时,车流速度是车流密度的一次函数为,当x=50时,(千米/小时),∴大桥上车流密度为50/辆千米时的车流速度68千米/小时;(2)由题意得,解得20<x<70,符合题意,∴为使大桥上的车流速度大于60千米/小时且小于80千米/小时,应把大桥上的车流密度控制在20千米/小时到70千米/小时之间;(3)由题意得y=vx,当时,y=80x,∵k=80>0,∴y随x的增大而增大,∴当x=20时,y有最大值1600,当时,y,当x=110时,y有最大值4840,∵4840>1600,∴当车流密度是110辆/千米,车流量y取得最大值是每小时4840辆.【点睛】此题考查待定系数法求一次函数的解析式,一元一次不等式组的实际应用,二次函数最大值的确定,正确掌握各知识点并熟练解题是关键.23、(1)y=;(2)B(m+n,n﹣m);(3)【分析】(1)根据等腰直角三角形性质,直角三角形斜边中线定理,三线合一,得到点坐标,代入解析式即可得到.(2)过点作平行于轴的直线,过点作垂直于轴的直线交于点,交轴于点,构造一线三等角全等,得到,,所以(3)把点和点的坐标代入反比例函数解析式得到关于、的等式,两边除以,换元法解得的值是【详解】解:(1)过作,交轴于点,,,为等腰直角三角形,,,将,代入反比例解析式得:,即,则反比例解析式为;(2)过作轴,过作,,,,,在和中,,,,,,,则;(3)由与都在反比例图象上,得到,整理得:,即
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 示范学校德育工作汇报
- 补光干预对红豆杉生长周期的影响机制研究
- 外出授课试讲管理办法
- 办公修旧利废管理办法
- 500KV输电线路铁塔斜柱斜面施工详解
- 岗山窑文化遗产活化促进地方农业产业发展模式探索
- 民警十二分制管理办法
- 楼宇智能化PLC控制系统的设计与实现
- 生物多样性保护与恢复机制-洞察及研究
- 地方国资集团投资能力提升路径研究
- 电气控制与PLC应用技术(三菱机型)高教版YL-235A送料机构控制电路的连接与编程教学案例高教版
- GB/T 5163-2006烧结金属材料(不包括硬质合金)可渗性烧结金属材料密度、含油率和开孔率的测定
- GB/T 17989.2-2020控制图第2部分:常规控制图
- 建设项目安全设施‘三同时’课件
- 2022语文课程标准:“语言文字积累与梳理”任务群解读及实操
- DB15T 489-2019 石油化学工业建设工程技术资料管理规范
- 内蒙古自治区通辽市各县区乡镇行政村村庄村名居民村民委员会明细及行政区划代码
- 螺旋溜槽安装标准工艺
- 2022年人教版六年级下册语文期末考试卷
- 《土地开发整理项目预算编制暂行办法》
- 安徽省评议公告的中小学教辅材料零售价格表
评论
0/150
提交评论