2024届浙江省金华十校高三下学期期终学习质量调研测试数学试题_第1页
2024届浙江省金华十校高三下学期期终学习质量调研测试数学试题_第2页
2024届浙江省金华十校高三下学期期终学习质量调研测试数学试题_第3页
2024届浙江省金华十校高三下学期期终学习质量调研测试数学试题_第4页
2024届浙江省金华十校高三下学期期终学习质量调研测试数学试题_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届浙江省金华十校高三下学期期终学习质量调研测试数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设等差数列的前项和为,若,,则()A.21 B.22 C.11 D.122.某几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.3.若,满足约束条件,则的取值范围为()A. B. C. D.4.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入的值为2,则输出的值为A. B. C. D.5.已知正四面体外接球的体积为,则这个四面体的表面积为()A. B. C. D.6.复数的共轭复数在复平面内所对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.中,,为的中点,,,则()A. B. C. D.28.如果直线与圆相交,则点与圆C的位置关系是()A.点M在圆C上 B.点M在圆C外C.点M在圆C内 D.上述三种情况都有可能9.陀螺是中国民间最早的娱乐工具,也称陀罗.如图,网格纸上小正方形的边长为,粗线画出的是某个陀螺的三视图,则该陀螺的表面积为()A. B.C. D.10.设数列是等差数列,,.则这个数列的前7项和等于()A.12 B.21 C.24 D.3611.已知数列满足:)若正整数使得成立,则()A.16 B.17 C.18 D.1912.双曲线x26-y23=1的渐近线与圆(x-3)2+y2=A.3 B.2C.3 D.6二、填空题:本题共4小题,每小题5分,共20分。13.在中,点在边上,且,设,,则________(用,表示)14.如图,半球内有一内接正四棱锥,该四棱锥的体积为,则该半球的体积为__________.15.设是等比数列的前项的和,成等差数列,则的值为_____.16.数据的标准差为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等差数列an,和等比数列b(I)求数列{an}(II)求数列n2an⋅a18.(12分)已知椭圆E:()的离心率为,且短轴的一个端点B与两焦点A,C组成的三角形面积为.(Ⅰ)求椭圆E的方程;(Ⅱ)若点P为椭圆E上的一点,过点P作椭圆E的切线交圆O:于不同的两点M,N(其中M在N的右侧),求四边形面积的最大值.19.(12分)某精密仪器生产车间每天生产个零件,质检员小张每天都会随机地从中抽取50个零件进行检查是否合格,若较多零件不合格,则需对其余所有零件进行检查.根据多年的生产数据和经验,这些零件的长度服从正态分布(单位:微米),且相互独立.若零件的长度满足,则认为该零件是合格的,否则该零件不合格.(1)假设某一天小张抽查出不合格的零件数为,求及的数学期望;(2)小张某天恰好从50个零件中检查出2个不合格的零件,若以此频率作为当天生产零件的不合格率.已知检查一个零件的成本为10元,而每个不合格零件流入市场带来的损失为260元.假设充分大,为了使损失尽量小,小张是否需要检查其余所有零件,试说明理由.附:若随机变量服从正态分布,则.20.(12分)如图,在四棱锥中,底面是菱形,∠,是边长为2的正三角形,,为线段的中点.(1)求证:平面平面;(2)若为线段上一点,当二面角的余弦值为时,求三棱锥的体积.21.(12分)如图在四边形中,,,为中点,.(1)求;(2)若,求面积的最大值.22.(10分)在边长为的正方形,分别为的中点,分别为的中点,现沿折叠,使三点重合,构成一个三棱锥.(1)判别与平面的位置关系,并给出证明;(2)求多面体的体积.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】

由题意知成等差数列,结合等差中项,列出方程,即可求出的值.【题目详解】解:由为等差数列,可知也成等差数列,所以,即,解得.故选:A.【题目点拨】本题考查了等差数列的性质,考查了等差中项.对于等差数列,一般用首项和公差将已知量表示出来,继而求出首项和公差.但是这种基本量法计算量相对比较大,如果能结合等差数列性质,可使得计算量大大减少.2、D【解题分析】

结合三视图可知,该几何体的上半部分是半个圆锥,下半部分是一个底面边长为4,高为4的正三棱柱,分别求出体积即可.【题目详解】由三视图可知该几何体的上半部分是半个圆锥,下半部分是一个底面边长为4,高为4的正三棱柱,则上半部分的半个圆锥的体积,下半部分的正三棱柱的体积,故该几何体的体积.故选:D.【题目点拨】本题考查三视图,考查空间几何体的体积,考查空间想象能力与运算求解能力,属于中档题.3、B【解题分析】

根据约束条件作出可行域,找到使直线的截距取最值得点,相应坐标代入即可求得取值范围.【题目详解】画出可行域,如图所示:由图可知,当直线经过点时,取得最小值-5;经过点时,取得最大值5,故.故选:B【题目点拨】本题考查根据线性规划求范围,属于基础题.4、C【解题分析】

由题意,模拟程序的运行,依次写出每次循环得到的,的值,当时,不满足条件,跳出循环,输出的值.【题目详解】解:初始值,,程序运行过程如下表所示:,,,,,,,,,,,,,,,,,,,,,跳出循环,输出的值为其中①②①—②得.故选:.【题目点拨】本题主要考查了循环结构的程序框图的应用,正确依次写出每次循环得到,的值是解题的关键,属于基础题.5、B【解题分析】

设正四面体ABCD的外接球的半径R,将该正四面体放入一个正方体内,使得每条棱恰好为正方体的面对角线,根据正方体和正四面体的外接球为同一个球计算出正方体的棱长,从而得出正四面体的棱长,最后可求出正四面体的表面积.【题目详解】将正四面体ABCD放在一个正方体内,设正方体的棱长为a,如图所示,设正四面体ABCD的外接球的半径为R,则,得.因为正四面体ABCD的外接球和正方体的外接球是同一个球,则有,∴.而正四面体ABCD的每条棱长均为正方体的面对角线长,所以,正四面体ABCD的棱长为,因此,这个正四面体的表面积为.故选:B.【题目点拨】本题考查球的内接多面体,解决这类问题就是找出合适的模型将球体的半径与几何体的一些几何量联系起来,考查计算能力,属于中档题.6、D【解题分析】

由复数除法运算求出,再写出其共轭复数,得共轭复数对应点的坐标.得结论.【题目详解】,,对应点为,在第四象限.故选:D.【题目点拨】本题考查复数的除法运算,考查共轭复数的概念,考查复数的几何意义.掌握复数的运算法则是解题关键.7、D【解题分析】

在中,由正弦定理得;进而得,在中,由余弦定理可得.【题目详解】在中,由正弦定理得,得,又,所以为锐角,所以,,在中,由余弦定理可得,.故选:D【题目点拨】本题主要考查了正余弦定理的应用,考查了学生的运算求解能力.8、B【解题分析】

根据圆心到直线的距离小于半径可得满足的条件,利用与圆心的距离判断即可.【题目详解】直线与圆相交,圆心到直线的距离,即.也就是点到圆的圆心的距离大于半径.即点与圆的位置关系是点在圆外.故选:【题目点拨】本题主要考查直线与圆相交的性质,考查点到直线距离公式的应用,属于中档题.9、C【解题分析】

画出几何体的直观图,利用三视图的数据求解几何体的表面积即可,【题目详解】由题意可知几何体的直观图如图:上部是底面半径为1,高为3的圆柱,下部是底面半径为2,高为2的圆锥,几何体的表面积为:,故选:C【题目点拨】本题考查三视图求解几何体的表面积,判断几何体的形状是解题的关键.10、B【解题分析】

根据等差数列的性质可得,由等差数列求和公式可得结果.【题目详解】因为数列是等差数列,,所以,即,又,所以,,故故选:B【题目点拨】本题主要考查了等差数列的通项公式,性质,等差数列的和,属于中档题.11、B【解题分析】

计算,故,解得答案.【题目详解】当时,,即,且.故,,故.故选:.【题目点拨】本题考查了数列的相关计算,意在考查学生的计算能力和对于数列公式方法的综合应用.12、A【解题分析】

由圆心到渐近线的距离等于半径列方程求解即可.【题目详解】双曲线的渐近线方程为y=±22x,圆心坐标为(3,0).由题意知,圆心到渐近线的距离等于圆的半径r,即r=±答案:A【题目点拨】本题考查了双曲线的渐近线方程及直线与圆的位置关系,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

结合图形及向量的线性运算将转化为用向量表示,即可得到结果.【题目详解】在中,因为,所以,又因为,所以.故答案为:【题目点拨】本题主要考查三角形中向量的线性运算,关键是利用已知向量为基底,将未知向量通过几何条件向基底转化.14、【解题分析】

由题意可知半球的半径与正四棱锥的高相等,可得正四棱锥的棱与半径的关系,进而可写出半球的半径与四棱锥体积的关系,进而求得结果.【题目详解】设所给半球的半径为,则四棱锥的高,则,由四棱锥的体积,半球的体积为:.【方法点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.15、2【解题分析】

设等比数列的公比设为再根据成等差数列利用基本量法求解再根据等比数列各项间的关系求解即可.【题目详解】解:等比数列的公比设为成等差数列,可得若则显然不成立,故则,化为解得,则故答案为:.【题目点拨】本题主要考查了等比数列的基本量求解以及运用,属于中档题.16、【解题分析】

先计算平均数再求解方差与标准差即可.【题目详解】解:样本的平均数,这组数据的方差是标准差,故答案为:【题目点拨】本题主要考查了标准差的计算,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(I)an=2n-1,bn=【解题分析】

(I)直接利用等差数列,等比数列公式联立方程计算得到答案.(II)n2【题目详解】(I)a1=b解得d=2q=3,故an=2n-1(II)n=14+【题目点拨】本题考查了等差数列,等比数列,裂项求和,意在考查学生对于数列公式方法的综合应用.18、(Ⅰ);(Ⅱ)4.【解题分析】

(Ⅰ)结合已知可得,求出a,b的值,即可得椭圆方程;(Ⅱ)由题意可知,直线的斜率存在,设出直线方程,联立直线方程与椭圆方程,利用判别式等于0可得,联立直线方程与圆的方程,结合根与系数的关系求得,利用弦长公式及点到直线的距离公式,求出,得到,整理后利用基本不等式求最值.【题目详解】解:(Ⅰ)可得,结合,解得,,,得椭圆方程;(Ⅱ)易知直线的斜率k存在,设:,由,得,由,得,∵,设点O到直线:的距离为d,,,由,得,,,∴∴,∴而,,易知,∴,则,四边形的面积当且仅当,即时取“”.∴四边形面积的最大值为4.【题目点拨】本题考查了由求椭圆的标准方程,直线与椭圆的位置关系,考查了学生的计算能力,综合性比较强,属于难题.19、(1)见解析(2)需要,见解析【解题分析】

(1)由零件的长度服从正态分布且相互独立,零件的长度满足即为合格,则每一个零件的长度合格的概率为,满足二项分布,利用补集的思想求得,再根据公式求得;(2)由题可得不合格率为,检查的成本为,求出不检查时损失的期望,与成本作差,再与0比较大小即可判断.【题目详解】(1),由于满足二项分布,故.(2)由题意可知不合格率为,若不检查,损失的期望为;若检查,成本为,由于,当充分大时,,所以为了使损失尽量小,小张需要检查其余所有零件.【题目点拨】本题考查正态分布的应用,考查二项分布的期望,考查补集思想的应用,考查分析能力与数据处理能力.20、(1)见解析;(2).【解题分析】

(1)先证明,可证平面,再由可证平面,即得证;(2)以为坐标原点,建立如图所示空间直角坐标系,设,求解面的法向量,面的法向量,利用二面角的余弦值为,可求解,转化即得解.【题目详解】(1)证明:因为是正三角形,为线段的中点,所以.因为是菱形,所以.因为,所以是正三角形,所以,所以平面.又,所以平面.因为平面,所以平面平面.(2)由(1)知平面,所以,.而,所以,.又,所以平面

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论