2023-2024学年黑龙江省七台河市数学九上期末考试试题含解析_第1页
2023-2024学年黑龙江省七台河市数学九上期末考试试题含解析_第2页
2023-2024学年黑龙江省七台河市数学九上期末考试试题含解析_第3页
2023-2024学年黑龙江省七台河市数学九上期末考试试题含解析_第4页
2023-2024学年黑龙江省七台河市数学九上期末考试试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年黑龙江省七台河市数学九上期末考试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,正方形ABCD和正方形CGFE的顶点C,D,E在同一条直线上,顶点B,C,G在同一条直线上.O是EG的中点,∠EGC的平分线GH过点D,交BE于点H,连接FH交EG于点M,连接OH.以下四个结论:①GH⊥BE;②△EHM∽△GHF;③﹣1;④=2﹣,其中正确的结论是()A.①②③ B.①②④ C.①③④ D.②③④2.将二次函数y=2x2+2的图象先向左平移3个单位长度,再向下平移1个单位长度后所得新函数图象的表达式为()A.y=2(x﹣1)2+3 B.y=﹣2(x+3)2+1C.y=2(x﹣3)2﹣1 D.y=2(x+3)2+13.如图1,一个扇形纸片的圆心角为90°,半径为1.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A.1π﹣ B.1π﹣9 C.12π﹣ D.4.九(1)班的教室里正在召开50人的座谈会,其中有3名教师,12名家长,35名学生,当林校长走到教室门口时,听到里面有人在发言,那么发言人是家长的概率为()A. B. C. D.5.如图,抛物线与轴交于点,其对称轴为直线,结合图象分析下列结论:①;②;③当时,随的增大而增大;④一元二次方程的两根分别为,;⑤;⑥若,为方程的两个根,则且,其中正确的结论有()A.个 B.个 C.个 D.个6.把抛物线的图象绕着其顶点旋转,所得抛物线函数关系式是()A. B. C. D.7.如图,点D是等腰直角三角形ABC内一点,AB=AC,若将△ABD绕点A逆时针旋转到△ACE的位置,则∠AED的度数为()A.25° B.30° C.40° D.45°8.如图,,,,四点都在上,,则的度数为()A. B. C. D.9.某楼盘准备以每平方米16000元的均价对外销售,由于受有关房地产的新政策影响,购房者持币观望.开发商为促进销售,对价格进行了连续两次下调,结果以每平方米14440元的均价开盘销售,则平均每次下调的百分率为()A.5% B.8% C.10% D.11%10.某商场降价销售一批名牌衬衫,已知所获利润y(元)与降价x(元)之间的关系是y=-2x2+60x+800,则利润获得最多为()A.15元 B.400元 C.800元 D.1250元11.正方形的边长为4,若边长增加x,那么面积增加y,则y关于x的函数表达式为()A. B. C. D.12.参加一次聚会的每两人都握了一次手,所有人共握手10

次,若共有

x

人参加聚会,则根据题意,可列方程()A. B. C. D.二、填空题(每题4分,共24分)13.如果x:y=1:2,那么=_____.14.如图,在平行四边形中,是边上的点,,连接,相交于点,则_________.15.如图,已知点A,点C在反比例函数y=(k>0,x>0)的图象上,AB⊥x轴于点B,OC交AB于点D,若CD=OD,则△AOD与△BCD的面积比为__.16.若能分解成两个一次因式的积,则整数k=_________.17.一个正n边形的一个外角等于72°,则n的值等于_____.18.双曲线在每个象限内,函数值y随x的增大而增大,则m的取值范围是__________三、解答题(共78分)19.(8分)(1)如图①,在△ABC中,AB=m,AC=n(n>m),点P在边AC上.当AP=时,△APB∽△ABC;(2)如图②,已知△DEF(DE>DF),请用直尺和圆规在直线DF上求作一点Q,使DE是线段DF和DQ的比例项.(保留作图痕迹,不写作法)20.(8分)在一个不透明的盒子里装有黑、白两种颜色的球共50个,这些球除颜色外其余完全相同.王颖做摸球试验,搅匀后,她从盒子里随机摸出一个球记下颜色后,再把球放回盒子中,不断重复上述过程,如表是试验中的一组统计数据:摸球的次数n10020030050080010003000摸到白球的次数m651241783024806001800摸到白球的频率0.650.620.5930.6040.60.60.6(1)请估计:当n很大时,摸到白球的频率将会接近;(精确到0.1)(2)若从盒子里随机摸出一个球,则摸到白球的概率的估计值为;(3)试估算盒子里黑、白两种颜色的球各有多少个?21.(8分)如图,点A、点B的坐标分别为(4,0)、(0,3),将线段BA绕点A沿顺时针旋转90°,设点B旋转后的对应点是点B1,求点B1的坐标.22.(10分)(1)已知:如图1,为等边三角形,点为边上的一动点(点不与、重合),以为边作等边,连接.求证:①,②;(2)如图2,在中,,,点为上的一动点(点不与、重合),以为边作等腰,(顶点、、按逆时针方向排列),连接,类比题(1),请你猜想:①的度数;②线段、、之间的关系,并说明理由;(3)如图3,在(2)的条件下,若点在的延长线上运动,以为边作等腰,(顶点、、按逆时针方向排列),连接.①则题(2)的结论还成立吗?请直接写出,不需论证;②连结,若,,直接写出的长.23.(10分)如图,在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.(1)求证:△BED≌△CFD;(2)若∠A=60°,BE=2,求△ABC的周长.24.(10分)用适当的方法解一元二次方程:(1)x2+4x﹣12=0(2)2x2﹣4x+1=025.(12分)某小区为了促进生活垃圾的分类处理,将生活垃圾分为厨余、可回收和其他三类,分别记为,,,并且设置了相应的垃圾箱,“厨余垃圾”箱、“可回收物”箱和“其他垃圾”箱,分别记为,,.(1)小亮将妈妈分类好的三类垃圾随机投入到三种垃圾箱内,请用画树状图或表格的方法表示所有可能性,并请求出小亮投放正确的概率.(2)请你就小亮投放垃圾的事件提出两条合理化建议.26.某广场有一个小型喷泉,水流从垂直于地面的水管OA喷出,OA长为1.5米.水流在各个方向上沿形状相同的抛物线路径落到地面上,某方向上抛物线路径的形状如图所示,落点B到O的距离为3米.建立平面直角坐标系,水流喷出的高度y(米)与水平距离x(米)之间近似满足函数关系(1)求y与x之间的函数关系式;(2)求水流喷出的最大高度.

参考答案一、选择题(每题4分,共48分)1、A【分析】由四边形ABCD和四边形CGFE是正方形,得出△BCE≌△DCG,推出∠BEC+∠HDE=90°,从而得GH⊥BE;由GH是∠EGC的平分线,得出△BGH≌△EGH,再由O是EG的中点,利用中位线定理,得HO∥BG且HO=BG;由△EHG是直角三角形,因为O为EG的中点,所以OH=OG=OE,得出点H在正方形CGFE的外接圆上,根据圆周角定理得出∠FHG=∠EHF=∠EGF=45°,∠HEG=∠HFG,从而证得△EHM∽△GHF;设HN=a,则BC=2a,设正方形ECGF的边长是2b,则NC=b,CD=2a,由HO∥BG,得出△DHN∽△DGC,即可得出,得到,即a2+2ab-b2=0,从而求得,设正方形ECGF的边长是2b,则EG=2b,得到HO=b,通过证得△MHO∽△MFE,得到,进而得到,进一步得到.【详解】解:如图,∵四边形ABCD和四边形CGFE是正方形,∴BC=CD,CE=CG,∠BCE=∠DCG,在△BCE和△DCG中,∴△BCE≌△DCG(SAS),∴∠BEC=∠BGH,∵∠BGH+∠CDG=90°,∠CDG=∠HDE,∴∠BEC+∠HDE=90°,∴GH⊥BE.故①正确;∵△EHG是直角三角形,O为EG的中点,∴OH=OG=OE,∴点H在正方形CGFE的外接圆上,∵EF=FG,∴∠FHG=∠EHF=∠EGF=45°,∠HEG=∠HFG,∴△EHM∽△GHF,故②正确;∵△BGH≌△EGH,∴BH=EH,又∵O是EG的中点,∴HO∥BG,∴△DHN∽△DGC,设EC和OH相交于点N.设HN=a,则BC=2a,设正方形ECGF的边长是2b,则NC=b,CD=2a,即a2+2ab﹣b2=0,解得:a=b=(﹣1+)b,或a=(﹣1﹣)b(舍去),故③正确;∵△BGH≌△EGH,∴EG=BG,∵HO是△EBG的中位线,∴HO=BG,∴HO=EG,设正方形ECGF的边长是2b,∴EG=2b,∴HO=b,∵OH∥BG,CG∥EF,∴OH∥EF,∴△MHO△MFE,∴,∴EM=OM,∴,∴∵EO=GO,∴S△HOE=S△HOG,∴故④错误,故选A.【点睛】本题考查了正方形的性质,以及全等三角形的判定与性质,相似三角形的判定与性质,正确求得两个三角形的边长的比是解决本题的关键.2、D【分析】根据二次函数图像的平移法则进行推导即可.【详解】解:将二次函数y=2x2+2的图象先向左平移3个单位长度,再向下平移1个单位长度后所得新函数图象的表达式为y=2(x+3)2+2﹣1,即y=2(x+3)2+1.故选:D.【点睛】本题考查了二次函数图像的平移,掌握并灵活运用“上加下减,左加右减”的平移原则是解题的关键.3、A【分析】连接OD,如图,利用折叠性质得由弧AD、线段AC和CD所围成的图形的面积等于阴影部分的面积,AC=OC,则OD=2OC=1,CD=3,从而得到∠CDO=30°,∠COD=10°,然后根据扇形面积公式,利用由弧AD、线段AC和CD所围成的图形的面积=S扇形AOD-S△COD,进行计算即可.【详解】解:连接OD,如图,∵扇形纸片折叠,使点A与点O恰好重合,折痕为CD,∴AC=OC,∴OD=2OC=1,∴CD=,∴∠CDO=30°,∠COD=10°,∴由弧AD、线段AC和CD所围成的图形的面积=S扇形AOD﹣S△COD=﹣=1π﹣,∴阴影部分的面积为1π﹣.故选A.【点睛】本题考查了扇形面积的计算:阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.记住扇形面积的计算公式.也考查了折叠性质.4、B【解析】根据概率=频数除以总数即可解题.【详解】解:由题可知:发言人是家长的概率==,故选B.【点睛】本题考查了概率的实际应用,属于简单题,熟悉概率的计算方法是解题关键.5、C【分析】利用二次函数图象与系数的关系,结合图象依次对各结论进行判断.【详解】解:抛物线与轴交于点,其对称轴为直线抛物线与轴交于点和,且由图象知:,,故结论①正确;抛物线与x轴交于点故结论②正确;当时,y随x的增大而增大;当时,随的增大而减小结论③错误;,抛物线与轴交于点和的两根是和,即为:,解得,;故结论④正确;当时,故结论⑤正确;抛物线与轴交于点和,,为方程的两个根,为方程的两个根,为函数与直线的两个交点的横坐标结合图象得:且故结论⑥成立;故选C.【点睛】本题主要考查二次函数的性质,关键在于二次函数的系数所表示的意义,以及与一元二次方程的关系,这是二次函数的重点知识.6、B【分析】根据图象绕顶点旋转180°,可得函数图象开口方向相反,顶点坐标相同,可得答案.【详解】∵,

∴该抛物线的顶点坐标是(1,3),

∴在旋转之后的抛物线解析式为:.

故选:B.【点睛】本题考查了二次函数图象的平移和旋转,解决本题的关键是理解绕抛物线的顶点旋转180°得到新函数的二次项的系数符号改变,顶点不变.7、D【分析】由题意可以判断△ADE为等腰直角三角形,即可解决问题.【详解】解:如图,由旋转变换的性质知:∠EAD=∠CAB,AE=AD;

∵△ABC为直角三角形,

∴∠CAB=90°,△ADE为等腰直角三角形,

∴∠AED=45°,

故选:D.【点睛】该题考查了旋转变换的性质及其应用问题;应牢固掌握旋转变换的性质.8、C【分析】根据圆周角定理求出∠A,根据圆内接四边形的性质计算即可.【详解】由圆周角定理得,∠A=∠BOD=,∵四边形ABCD为⊙O的内接四边形,∴∠BCD=−∠A=,故选:C.【点睛】本题考查了圆周角定理以及圆内接四边形的性质,熟练掌握性质定理是解题的关键.9、A【分析】设平均每次下调的百分率为x,根据该楼盘的原价及经过两次降价后的价格,即可得出关于x的一元二次方程,即可得出结果.【详解】设平均每次下调的百分率为x,依题意,得:16000(1﹣x)2=14440,解得:x1=0.05=5%,x2=1.95(不合题意,舍去),答:平均每次下调的百分率为5%.故选:A.【点睛】本题主要考查一元二次方程的实际应用,找出等量关系,列出关于x的方程,是解题的关键.10、D【分析】将函数关系式转化为顶点式,然后利用开口方向和顶点坐标即可求出最多的利润.【详解】解:y=-2x2+60x+800=-2(x-15)2+1250∵-2<0故当x=15时,y有最大值,最大值为1250即利润获得最多为1250元故选:D.【点睛】此题考查的是利用二次函数求最值,掌握将二次函数的一般式转化为顶点式求最值是解决此题的关键.11、C【分析】加的面积=新正方形的面积-原正方形的面积,把相关数值代入化简即可.【详解】解:∵新正方形的边长为x+4,原正方形的边长为4,∴新正方形的面积为(x+4)2,原正方形的面积为16,∴y=(x+4)2-16=x2+8x,故选:C.【点睛】本题考查列二次函数关系式;得到增加的面积的等量关系是解决本题的关键.12、C【分析】如果人参加了这次聚会,则每个人需握手次,人共需握手次;而每两个人都握了一次手,因此一共握手次.【详解】设人参加了这次聚会,则每个人需握手次,依题意,可列方程.故选C.【点睛】本题主要考查一元二次方程的应用.二、填空题(每题4分,共24分)13、【分析】根据合比性质,可得答案.【详解】解:,即.故答案为.【点睛】考查了比例的性质,利用了和比性质:.14、【分析】设△AEO的面积为a,由平行四边形的性质可知AE∥CD,可证△AEO∽△CDO,相似比为AE:CD=EO:DO=3:4,由相似三角形的性质可求△CDO的面积,由等高的两个三角形面积等于底边之比,可求△ADO的面积,得出的值.【详解】解:设△AEO的面积为a,∵四边形ABCD是平行四边形,∴AB∥CD,且AB=CD,∵,∴AE=CD=AB,由AB∥CD知△AEO∽△CDO,∴,∴,∵设△AEO的面积为a,,∴S△CDO=,∵△ADO和△AEO共高,且EO:DO=3:4,,∴S△ADO=,则S△ACD=S△ADO+S△CDO=,∴故答案为:.【点睛】本题考查了相似三角形的判定与性质.关键是由平行线得出相似三角形,利用相似比求相似三角形的面积,等高的三角形面积.15、1.【分析】作CE⊥x轴于E,如图,利用平行线分线段成比例得到===,设D(m,n),则C(2m,2n),再根据反比例函数图象上点的坐标特征得到k=4mn,则A(m,4n),然后根据三角形面积公式用m、n表示S△AOD和S△BCD,从而得到它们的比.【详解】作CE⊥x轴于E,如图,∵DB∥CE,∴===,设D(m,n),则C(2m,2n),∵C(2m,2n)在反比例函数图象上,∴k=2m×2n=4mn,∴A(m,4n),∵S△AOD=×(4n﹣n)×m=mn,S△BCD=×(2m﹣m)×n=mn∴△AOD与△BCD的面积比=mn:mn=1.故答案为1.【点睛】考核知识点:平行线分线段成比例,反比例函数;数形结合,利用平行线分线段成比例,反比例函数定义求出点的坐标关系是关键.16、【分析】根据题意设多项式可以分解为:(x+ay+c)(2x+by+d),则2c+d=k,根据cd=6,求出所有符合条件的c、d的值,然后再代入ad+bc=0求出a、b的值,与2a+b=1联立求出a、b的值,a、b是整数则符合,否则不符合,最后把符合条件的值代入k进行计算即可.【详解】解:设能分解成:(x+ay+c)(2x+by+d),即2x2+aby2+(2a+b)xy+(2c+d)x+(ad+bc)y+cd,∴cd=6,∵6=1×6=2×3=(-2)×(-3)=(-1)×(-6),∴①c=1,d=6时,ad+bc=6a+b=0,与2a+b=1联立求解得,或c=6,d=1时,ad+bc=a+6b=0,与2a+b=1联立求解得,②c=2,d=3时,ad+bc=3a+2b=0,与2a+b=1联立求解得,或c=3,d=2时,ad+bc=2a+3b=0,与2a+b=1联立求解得,③c=-2,d=-3时,ad+bc=-3a-2b=0,与2a+b=1联立求解得,或c=-3,d=-2,ad+bc=-2a-3b=0,与2a+b=1联立求解得,④c=-1,d=-6时,ad+bc=-6a-b=0,与2a+b=1联立求解得,或c=-6,d=-1时,ad+bc=-a-6b=0,与2a+b=1联立求解得,∴c=2,d=3时,c=-2,d=-3时,符合,∴k=2c+d=2×2+3=1,k=2c+d=2×(-2)+(-3)=-1,∴整数k的值是1,-1.故答案为:.【点睛】本题考查因式分解的意义,设成两个多项式的积的形式是解题的关键,要注意6的所有分解结果,还需要用a、b进行验证,注意不要漏解.17、1.【分析】可以利用多边形的外角和定理求解.【详解】解:∵正n边形的一个外角为72°,∴n的值为360°÷72°=1.故答案为:1【点睛】本题考查了多边形外角和,熟记多边形的外角和等于360度是解题的关键.18、【分析】根据反比例函数的性质可知,y随x的增大而增大则k知小于0,即m-2<0,解得m的范围即可.【详解】∵反比例函数y随x的增大而增大∴m-2<0则m<2【点睛】本题考查了反比例函数的性质,函数值y随x的增大而增大则k小于0,函数值y随x的增大而减小则k大于0.三、解答题(共78分)19、(1);(2)见解析.【分析】(1)根据相似三角形的判定方法进行分析即可;(2)直接利用相似三角形的判定方法以及结合做一角等于已知角进而得出答案.【详解】(1)解:要使△APB∽△ABC成立,∠A是公共角,则,即,∴AP=.(2)解:作∠DEQ=∠F,如图点Q就是所求作的点【点睛】本题考查了相似变换,正确掌握相似三角形的判定方法是解题的关键.20、(1)0.6;(2)0.6;(3)盒子里黑颜色的球有20只,盒子白颜色的球有30只【分析】(1)观察表格找到逐渐稳定到的常数即可;(2)概率接近于(1)得到的频率;(3)白球个数=球的总数×得到的白球的概率,让球的总数减去白球的个数即为黑球的个数,问题得解.【详解】(1)∵摸到白球的频率约为0.6,∴当n很大时,摸到白球的频率将会接近0.6;故答案为:0.6;(2)∵摸到白球的频率为0.6,∴若从盒子里随机摸出一只球,则摸到白球的概率的估计值为0.6;(3)黑白球共有20只,白球为:50×0.6=30(只),黑球为:50﹣30=20(只).答:盒子里黑颜色的球有20只,盒子白颜色的球有30只.【点睛】考查利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:部分的具体数目=总体数目×相应频率.21、B1点的坐标为(7,4)【分析】如图,作B1C⊥x轴于C,证明△ABO≌△B1AC得到AC=OB=3,B1C=OA=4,然后写出B1点的坐标.【详解】如图,作B1C⊥x轴于C.∵A(4,0)、B(0,3),∵OA=4,OB=3,∵线段BA绕点A沿顺时针旋转90°得AB1,∴BA=AB1,且∠BAB1=90°,∴∠BAO+∠B1AC=90°而∠BAO+∠ABO=90°,∴∠ABO=∠B1AC,∴△ABO≌△B1AC,∴AC=OB=3,B1C=OA=4,∴OC=OA+AC=7,∴B1点的坐标为(7,4).【点睛】本题考查了坐标与图形变化-旋转,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.22、(1)①见解析;②∠DCE=110°;(1)∠DCE=90°,BD1+CD1=DE1.证明见解析;(3)①(1)中的结论还成立,②AE=.【分析】(1)①根据等边三角形的性质就可以得出∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE,进而就可以得出△ABD≌△ACE,即可得出结论;②由△ABD≌△ACE,以及等边三角形的性质,就可以得出∠DCE=110°;

(1)先判定△ABD≌△ACE(SAS),得出∠B=∠ACE=45°,BD=CE,在Rt△DCE中,根据勾股定理得出CE1+CD1=DE1,即可得到BD1+CD1=DE1;

(3)①运用(1)中的方法得出BD1+CD1=DE1;②根据Rt△BCE中,BE=10,BC=6,求得进而得出CD=8-6=1,在Rt△DCE中,求得最后根据△ADE是等腰直角三角形,即可得出AE的长.【详解】(1)①如图1,∵△ABC和△ADE是等边三角形,∴AB=AC,AD=AE,∠ACB=∠B=60°,∠BAC=∠DAE=60°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠EAC.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE;②∵△ABD≌△ACE,∠ACE=∠B=60°,∴∠DCE=∠ACE+∠ACB=60°+60°=110°;(1)∠DCE=90°,BD1+CD1=DE1.证明:如图1,∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△ABD与△ACE中,,∴△ABD≌△ACE(SAS),∴∠B=∠ACE=45°,BD=CE,∴∠B+∠ACB=∠ACE+∠ACB=90°,∴∠BCE=90°,∴Rt△DCE中,CE1+CD1=DE1,∴BD1+CD1=DE1;(3)①(1)中的结论还成立.

理由:如图3,∵∠BAC=∠DAE=90°,

∴∠BAC+∠DAC=∠DAE+∠DAC,

即∠BAD=∠CAE,

在△ABD与△ACE中,∴△ABD≌△ACE(SAS),

∴∠ABC=∠ACE=45°,BD=CE,

∴∠ABC+∠ACB=∠ACE+∠ACB=90°,

∴∠BCE=90°=∠ECD,

∴Rt△DCE中,CE1+CD1=DE1,

∴BD1+CD1=DE1;②∵Rt△BCE中,BE=10,BC=6,∴BD=CE=8,

∴CD=8-6=1,

∴Rt△DCE中,∵△ADE是等腰直角三角形,【点睛】本题属于三角形综合题,主要考查了全等三角形的判定与性质,等边三角形的性质,等腰直角三角形的性质以及勾股定理的综合应用,解决问题的关键是掌握全等三角形的对应边相等,对应角

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论