




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江青冈县一中2024届高三下学期期中考试数学试题(文解析)试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知全集,则集合的子集个数为()A. B. C. D.2.下列不等式正确的是()A. B.C. D.3.在正项等比数列{an}中,a5-a1=15,a4-a2=6,则a3=()A.2 B.4 C. D.84.直角坐标系中,双曲线()与抛物线相交于、两点,若△是等边三角形,则该双曲线的离心率()A. B. C. D.5.设抛物线上一点到轴的距离为,到直线的距离为,则的最小值为()A.2 B. C. D.36.已知命题:使成立.则为()A.均成立 B.均成立C.使成立 D.使成立7.已知双曲线:的左、右两个焦点分别为,,若存在点满足,则该双曲线的离心率为()A.2 B. C. D.58.在三棱锥中,,,,,点到底面的距离为2,则三棱锥外接球的表面积为()A. B. C. D.9.已知符号函数sgnxf(x)是定义在R上的减函数,g(x)=f(x)﹣f(ax)(a>1),则()A.sgn[g(x)]=sgnx B.sgn[g(x)]=﹣sgnxC.sgn[g(x)]=sgn[f(x)] D.sgn[g(x)]=﹣sgn[f(x)]10.如图所示,用一边长为的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将体积为的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋(球体)离蛋巢底面的最短距离为()A. B.C. D.11.已知集合,,则()A. B.C.或 D.12.从装有除颜色外完全相同的3个白球和个黑球的布袋中随机摸取一球,有放回的摸取5次,设摸得白球数为,已知,则A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知随机变量服从正态分布,若,则_________.14.设实数,满足,则的最大值是______.15.已知,记,则的展开式中各项系数和为__________.16.已知,则展开式的系数为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°,将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的二面角B−CG−A的大小.18.(12分)在平面直角坐标系中,曲线的参数方程为(为参数),以原点为极点,轴的非负半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)求曲线的极坐标方程以及曲线的直角坐标方程;(2)若直线与曲线、曲线在第一象限交于两点,且,点的坐标为,求的面积.19.(12分)椭圆:()的离心率为,它的四个顶点构成的四边形面积为.(1)求椭圆的方程;(2)设是直线上任意一点,过点作圆的两条切线,切点分别为,,求证:直线恒过一个定点.20.(12分)△的内角的对边分别为,且.(1)求角的大小(2)若,△的面积,求△的周长.21.(12分)已知数列满足(),数列的前项和,(),且,.(1)求数列的通项公式:(2)求数列的通项公式.(3)设,记是数列的前项和,求正整数,使得对于任意的均有.22.(10分)已知数列的前项和和通项满足.(1)求数列的通项公式;(2)已知数列中,,,求数列的前项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】
先求B.再求,求得则子集个数可求【题目详解】由题=,则集合,故其子集个数为故选C【题目点拨】此题考查了交、并、补集的混合运算及子集个数,熟练掌握各自的定义是解本题的关键,是基础题2、D【解题分析】
根据,利用排除法,即可求解.【题目详解】由,可排除A、B、C选项,又由,所以.故选D.【题目点拨】本题主要考查了三角函数的图象与性质,以及对数的比较大小问题,其中解答熟记三角函数与对数函数的性质是解答的关键,着重考查了推理与运算能力,属于基础题.3、B【解题分析】
根据题意得到,,解得答案.【题目详解】,,解得或(舍去).故.故选:.【题目点拨】本题考查了等比数列的计算,意在考查学生的计算能力.4、D【解题分析】
根据题干得到点A坐标为,代入抛物线得到坐标为,再将点代入双曲线得到离心率.【题目详解】因为三角形OAB是等边三角形,设直线OA为,设点A坐标为,代入抛物线得到x=2b,故点A的坐标为,代入双曲线得到故答案为:D.【题目点拨】求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,结合转化为的齐次式,然后等式(不等式)两边分别除以或转化为关于的方程(不等式),解方程(不等式)即可得(的取值范围).5、A【解题分析】
分析:题设的直线与抛物线是相离的,可以化成,其中是点到准线的距离,也就是到焦点的距离,这样我们从几何意义得到的最小值,从而得到的最小值.详解:由①得到,,故①无解,所以直线与抛物线是相离的.由,而为到准线的距离,故为到焦点的距离,从而的最小值为到直线的距离,故的最小值为,故选A.点睛:抛物线中与线段的长度相关的最值问题,可利用抛物线的几何性质把动线段的长度转化为到准线或焦点的距离来求解.6、A【解题分析】试题分析:原命题为特称命题,故其否定为全称命题,即.考点:全称命题.7、B【解题分析】
利用双曲线的定义和条件中的比例关系可求.【题目详解】.选B.【题目点拨】本题主要考查双曲线的定义及离心率,离心率求解时,一般是把已知条件,转化为a,b,c的关系式.8、C【解题分析】
首先根据垂直关系可确定,由此可知为三棱锥外接球的球心,在中,可以算出的一个表达式,在中,可以计算出的一个表达式,根据长度关系可构造等式求得半径,进而求出球的表面积.【题目详解】取中点,由,可知:,为三棱锥外接球球心,过作平面,交平面于,连接交于,连接,,,,,,为的中点由球的性质可知:平面,,且.设,,,,在中,,即,解得:,三棱锥的外接球的半径为:,三棱锥外接球的表面积为.故选:.【题目点拨】本题考查三棱锥外接球的表面积的求解问题,求解几何体外接球相关问题的关键是能够利用球的性质确定外接球球心的位置.9、A【解题分析】
根据符号函数的解析式,结合f(x)的单调性分析即可得解.【题目详解】根据题意,g(x)=f(x)﹣f(ax),而f(x)是R上的减函数,当x>0时,x<ax,则有f(x)>f(ax),则g(x)=f(x)﹣f(ax)>0,此时sgn[g(x)]=1,当x=0时,x=ax,则有f(x)=f(ax),则g(x)=f(x)﹣f(ax)=0,此时sgn[g(x)]=0,当x<0时,x>ax,则有f(x)<f(ax),则g(x)=f(x)﹣f(ax)<0,此时sgn[g(x)]=﹣1,综合有:sgn[g(x)]=sgn(x);故选:A.【题目点拨】此题考查函数新定义问题,涉及函数单调性辨析,关键在于读懂定义,根据自变量的取值范围分类讨论.10、D【解题分析】因为蛋巢的底面是边长为的正方形,所以过四个顶点截鸡蛋所得的截面圆的直径为,又因为鸡蛋的体积为,所以球的半径为,所以球心到截面的距离,而截面到球体最低点距离为,而蛋巢的高度为,故球体到蛋巢底面的最短距离为.点睛:本题主要考查折叠问题,考查球体有关的知识.在解答过程中,如果遇到球体或者圆锥等几何体的内接或外接几何体的问题时,可以采用轴截面的方法来处理.也就是画出题目通过球心和最低点的截面,然后利用弦长和勾股定理来解决.球的表面积公式和体积公式是需要熟记的.11、D【解题分析】
首先求出集合,再根据补集的定义计算可得;【题目详解】解:∵,解得∴,∴.故选:D【题目点拨】本题考查补集的概念及运算,一元二次不等式的解法,属于基础题.12、B【解题分析】
由题意知,,由,知,由此能求出.【题目详解】由题意知,,,解得,,.故选:B.【题目点拨】本题考查离散型随机变量的方差的求法,解题时要认真审题,仔细解答,注意二项分布的灵活运用.二、填空题:本题共4小题,每小题5分,共20分。13、0.4【解题分析】
因为随机变量ζ服从正态分布,利用正态曲线的对称性,即得解.【题目详解】因为随机变量ζ服从正态分布所以正态曲线关于对称,所.【题目点拨】本题考查了正态分布曲线的对称性在求概率中的应用,考查了学生概念理解,数形结合,数学运算的能力,属于基础题.14、1【解题分析】
根据目标函数的解析式形式,分析目标函数的几何意义,然后判断求出目标函数取得最优解的点的坐标,即可求解.【题目详解】作出实数,满足表示的平面区域,如图所示:由可得,则表示直线在轴上的截距,截距越小,越大.由可得,此时最大为1,故答案为:1.【题目点拨】本题主要考查线性规划知识的运用,考查学生的计算能力,考查数形结合的数学思想.15、【解题分析】
根据定积分的计算,得到,令,求得,即可得到答案.【题目详解】根据定积分的计算,可得,令,则,即的展开式中各项系数和为.【题目点拨】本题主要考查了定积分的应用,以及二项式定理的应用,其中解答中根据定积分的计算和二项式定理求得的表示是解答本题的关键,着重考查了运算与求解能力,属于基础题.16、【解题分析】
先根据定积分求出的值,再用二项展开式公式即可求解.【题目详解】因为所以的通项公式为当时,当时,故展开式中的系数为故答案为:【题目点拨】此题考查定积分公式,二项展开式公式等知识点,属于简单题目.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见详解;(2).【解题分析】
(1)因为折纸和粘合不改变矩形,和菱形内部的夹角,所以,依然成立,又因和粘在一起,所以得证.因为是平面垂线,所以易证.(2)在图中找到对应的平面角,再求此平面角即可.于是考虑关于的垂线,发现此垂足与的连线也垂直于.按照此思路即证.【题目详解】(1)证:,,又因为和粘在一起.,A,C,G,D四点共面.又.平面BCGE,平面ABC,平面ABC平面BCGE,得证.(2)过B作延长线于H,连结AH,因为AB平面BCGE,所以而又,故平面,所以.又因为所以是二面角的平面角,而在中,又因为故,所以.而在中,,即二面角的度数为.【题目点拨】很新颖的立体几何考题.首先是多面体粘合问题,考查考生在粘合过程中哪些量是不变的.再者粘合后的多面体不是直棱柱,建系的向量解法在本题中略显麻烦,突出考查几何方法.最后将求二面角转化为求二面角的平面角问题考查考生的空间想象能力.18、(1)的极坐标方程为,的直角坐标方程为(2)【解题分析】
(1)先把曲线的参数方程消参后,转化为普通方程,再利用求得极坐标方程.将,化为,再利用求得曲线的普通方程.(2)设直线的极角,代入,得,将代入,得,由,得,即,从而求得,,从而求得,再利用求解.【题目详解】(1)依题意,曲线,即,故,即.因为,故,即,即.(2)将代入,得,将代入,得,由,得,得,解得,则.又,故,故的面积.【题目点拨】本题考查极坐标方程与直角坐标方程、参数方程与普通方程的转化、极坐标的几何意义,还考查推理论证能力以及数形结合思想,属于中档题.19、(1);(2)证明见解析.【解题分析】
(1)根据椭圆的基本性质列出方程组,即可得出椭圆方程;(2)设点,,,由,,结合斜率公式化简得出,,即,满足,由的任意性,得出直线恒过一个定点.【题目详解】(1)依题意得,解得即椭圆:;(2)设点,,其中,由,得,即,注意到,于是,因此,满足由的任意性知,,,即直线恒过一个定点.【题目点拨】本题主要考查了求椭圆的方程,直线过定点问题,属于中档题.20、(I);(II).【解题分析】
试题分析:(I)由已知可得;(II)依题意得:的周长为.试题解析:(I)∵,∴.∴,∴,∴,∴,∴.(II)依题意得:∴,∴,∴,∴,∴的周长为.考点:1、解三角形;2、三角恒等变换.21、(1)().(2),.(3)【解题分析】
(1)依题意先求出,然后根据,求出的通项公式为,再检验的情况即可;(2)由递推公式,得,结合数列性质可得数列相邻项之间的关系,从而可求出结果;(3)通过(1)、(2)可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大学生职业规划大赛《应用化学专业》生涯发展展示P
- 大学生职业规划大赛《环境科学专业》生涯发展展示
- 医疗机构传染病防控责任清单(2024年版)
- 2025企业并购服务合同为什么要进行企业并购
- 2025商务会议租车合同模板
- 2025婚前财产赠与合同范文
- 演讲技巧精要
- 2025天津市合同协议书常用范本
- 2025设备租赁合同范本 租赁合同模板范文
- 艺术教育的跨学科融合
- 2025购销合同(电子产品)范文
- 基于全生命周期的绿色建筑成本影响因素研究
- 2025年普法知识竞赛题库及答案(共80题)
- 心力衰竭护理查房 课件
- 【课时练基础作业】人教版四年级数学下册第四单元《期中计算能力测试》(含答案)
- 树木修剪合同协议
- 2025年兰州市九年级诊断考试(一诊)物理试卷
- 2024年4月27日福建省事业单位《综合基础知识》真题及答案
- 农民工工资专用账户管理制度
- 部编版五年级道德与法治下册第三单元《百年追梦复兴中华》教材分析单元分析
- 初级培训机器人的机械系统
评论
0/150
提交评论