专题11 二次函数与四边形(原卷版)_第1页
专题11 二次函数与四边形(原卷版)_第2页
专题11 二次函数与四边形(原卷版)_第3页
专题11 二次函数与四边形(原卷版)_第4页
专题11 二次函数与四边形(原卷版)_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

九年级数学下册解法技巧思维培优专题11二次函数与四边形【典例1】(2019•浙江模拟)已知二次函数图象的顶点坐标为M(1,0),直线y=x+m与该二次函数的图象交于A,B两点,其中A点的坐标为(3,4),B点在y轴上.(1)求m的值及这个二次函数的解析式;(2)在x轴上找一点Q,使△QAB的周长最小,并求出此时Q点坐标;(3)若P(a,0)是x轴上的一个动点,过P作x轴的垂线分别与直线AB和二次函数的图象交于D、E两点.①设线段DE的长为h,当0<a<3时,求h与a之间的函数关系式;②若直线AB与抛物线的对称轴交点为N,问是否存在一点P,使以M、N、D、E为顶点的四边形是平行四边形?若存在,请求出此时P点的坐标;若不存在,请说明理由.【典例2】(2019•海州区二模)如图,一次函数y=x+3与坐标轴交于A、C两点,过A、C两点的抛物线y=ax2﹣2x+c与x轴交于另一点B抛物线顶点为E,连接AE.(1)求该抛物线的函数表达式及顶点E坐标;(2)点P是线段AE上的一动点,过点P作PF平行于y轴交AC于点F,连接EF,求△PEF面积的最大值及此时点P的坐标;(3)若点M为坐标轴上一点,点N为平面内任意一点,是否存在这样的点,使A、E、M、N为顶点的四边形是以AE为对角线的矩形?如果存在,请直接写出N点坐标;若不存在,请说明理由.【典例3】(2020•颍州区一模)如图,抛物线y=-14x2+3112x﹣1与y轴交于点A,点B是抛物线上的一点,过点B作BC⊥x轴于点C(1)求直线AB的表达式;(2)若直线MN∥y轴,分别与抛物线,直线AB,x轴交于点M、N、Q,且点Q位于线段OC之间,求线段MN长度的最大值;(3)在(2)的条件下,当四边形MNCB是平行四边形时,求点Q的坐标.【典例4】(2019•渝中区校级一模)如图1,在平面直角坐标系中,抛物线y=-12x2-72x﹣3交x轴于A,B两点(点A在点B(1)求直线AC的解析式;(2)点P是直线AC上方抛物线上的一动点(不与点A,点C重合),过点P作PD⊥x轴交AC于点D,求PD的最大值;(3)将△BOC沿直线BC平移,点B平移后的对应点为点B′,点O平移后的对应点为点O′,点C平移后的对应点为点C′,点S是坐标平面内一点,若以A,C,O′,S为顶点的四边形是菱形,求出所有符合条件的点S的坐标.【典例5】(2019•振兴区校级二模)如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,交y轴正半轴于C点,D为抛物线的顶点,A(﹣1,0),B(3,0).(1)求出二次函数的表达式.(2)点P在x轴上,且∠PCB=∠CBD,求点P的坐标.(3)在x轴上方抛物线上是否存在一点Q,使得以Q,C,B,O为顶点的四边形被对角线分成面积相等的两部分?如果存在,请直接写出点Q的坐标;如果不存在,请说明理由.巩固练习1.(2019•费县一模)如图,已知抛物线y=ax2+2x+c与y轴交于点A(0,6),与x轴交于点B(6,0),点P是线段AB上方抛物线上的一个动点.(1)求这条抛物线的表达式及其顶点坐标;(2)当点P从A点出发沿线段AB上方的抛物线向终点B移动时,点P到直线AB的距离为d,求d最大时点P的坐标;(3)点M在抛物线上,点N在x轴上,是否存在以点A,B,M,N为顶点的四边形是平行四边形?若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.2.(2019•邯郸三模)如图(1),在平面直角坐标系xOy中,直线y=2x+4与y轴交于点A,与x轴交于点B,抛物线C1:y=-14x2+bx+c过A,B两点,与x轴的另一交点为点(1)求抛物线C1的解析式及点C的坐标;(2)如图(2),作抛物线C2,使得抛物线C2与C1恰好关于原点对称,C2与C1在第一象限内交于点D,连接AD,CD,①请直接写出抛物线C2的解析式和点D的坐标②求四边形AOCD的面积;(3)已知抛物线C2的顶点为M,设P为抛物线C1对称轴上一点,Q为直线y=2x+4上一点,是否存在以点M,Q,P,B为顶点的四边形为平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.3.(2019•成都模拟)如图,抛物线y=12x2+bx+c与轴交于点A和点B,与y轴交于点C,作直线BC,点B的坐标为(6,0),点C的坐标为(0,﹣(1)求抛物线的解析式并写出其对称轴;(2)D为抛物线对称轴上一点,当△BCD是以BC为直角边的直角三角形时,求D点坐标;(3)若E为y轴上且位于点C下方的一点,P为直线BC上的一点,在第四象限的抛物线上是否存在一点Q.使以C,E,P,Q为顶点的四边形是菱形?若存在,请求出Q点的横坐标;若不存在,请说明理由.4.(2020•新抚区二模)如图,对称轴为x=1的抛物线经过A(﹣1,0),B(2,﹣3)两点.(1)求抛

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论