




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
StationaryBatteryEnergyStorageSystemsAnalysis
Afocusonintradayshifting
March2023
Contents
Preface 3
Anoteontheanalysis 3
Summary 4
Recommendations 4
Definitions 5
Context 6
ExamplesofBESSprojectsandinstallations 7
Technologiesandmanufacturers 8
Lithiumionbatteries 8
Redoxflowbatteries(RFB) 8
Moltensaltbatteries 9
Othermetalbatteries 9
Non-metalbatteries 9
Commercialisationconsiderations 10
Analysis 13
Technicalcomparison 13
Commercialcomparison 17
Environmentalcomparison 19
Safetycomparison 21
Conclusionandrecommendations 22
Appendix 23
References 25
Preface
Thepurposeofthisdocumentistoprovideatechnicalandcommercialcomparisonofvariousbatteryenergystoragesystem(BESS)chemistrieswhicharecurrentlyavailableonthemarketsuitableforintradayshifting.
WhensuchaBESSiscombinedwithanintermittentrenewableenergysystemwithnoinherentstorage(wind,solar,run-of-the-riverhydro),throughouttheday,theresultinghybridsystemcandivertanyexcessenergyproducedattimesoflowdemandtostorage.TheBESScansubsequentlysupplythegridattimesofhighdemand,whilstalsominimisingtheuseoffossilfuelswhenattemptingtomatchpeakdemandandovercomenetworkconstraints.
Anoteontheanalysis
TheanalysispresentedinthisdocumentwasconductedinternallybyAraAkeinQ42022,andassuch,onlyshowsasnapshotoftheBESSmarketintime.DuetothesignificantgrowthandinnovationoccurringintheBESSmarket,dependinguponwhenthisdocumentispickedupbythereader,theresultsthroughoutregardingthechemistriespresentedmaybeoutofdate.
3
Summary
RenewableenergyisNewZealand’slargestsourceofelectricitygeneration(82%)andprovidesapproximately41%ofNewZealand’sprimaryenergysupply.1Of
theinstalledrenewableelectricitycapacity,20%isassociatedwithintermittentrenewableenergysystems(IRES)withlittletonocapacityforenergystorage.2
ThereispotentialtoovercomethisissuebycombiningIRESwithstationaryenergystoragesystems(i.e.batteries).Withthiskindofhybridsystem,throughintradayshifting,anyexcessenergyproducedbytheplantattimesoflowdemandmaybestoredtosubsequentlysupplythegridattimesofhighdemand,whilstalsominimisingtheuseoffossilfuelswhenattemptingtomatchpeakdemandandovercomenetworkconstraints.
AraAkehasidentifiedanumberofpotentialIRESpowerplantswithinNewZealandtodemonstratesuchahybridsystem.Lithiumiontechnologydominatesthebattery
marketacrossmostsectors,3includingrenewableenergystorage,butitisofinteresttoAraAketounderstandthetechnicalandcommercialcharacteristicsofallthevariousbatterysolutionsavailableonthemarket,aswellasthesafetyandenvironmentalimpactsofthesetechnologies.
Recommendations
Ofthemorethan10containerisedBESSstudied,nickel-hydrogen(NiH2)isastandoutchemistryforstorageof12hoursorlesswhenconsideringallaspectsduetoauseablelifetimeof30yearsand30,000charge/dischargecycles.
Onafootprintbasis,nickel-hydrogeniscompetitiveintermsofuseableannualenergyoutputwithhigherenergydensitylithiumionandmoltensaltbatterychemistries.Onalifetimebasis,nickel-hydrogenhasamongthehighestenergyoutputofalltechnologiesstudied,beatingallmanufacturers,buttwolithiumionofferings(CATLandTesla).
Nickel-hydrogenisdesignedforuptothreecharge/dischargecyclesperday,yetisalsocapableofdischargeratesvaryingbetween2and12hours.Competitorshavesimilarcharge/dischargerates,butareonlydesignedforamaximumofonetotwocyclesperdaybeforesignificantlyimpactingbatterylifetime.
Fromacostperspective,nickel-hydrogenisthebestvaluefor12hoursorlessofstoragewhencomparingthelevelisedcostofstorage(LCOS)ofthetechnologies,ameasureofthetotalcostofanenergystoragesystemagainsttheenergydischargedoverthebattery’slifetime.
Theestimatedenvironmentalimpactofthebatteryiscomparabletoanumberofcompetitors,butsignificantlylowerthanlithiumion.
Thenickel-hydrogentechnologyhaspassedallrelevantbatterysafetystandards,includingtheUL9540Atestforthermalrunaway.Manynewbatterytechnologieshavepassedthistest,however,fewlithiumionmanufacturershavewithonlyasinglecontainerisedlithiumionbatterymanufacturerintheUL9540Adatabase(EVLO).
Themanufacturer,EnerVenue,hasbeenbackedbymultibilliondollarengineeringcompany,Schlumberger(marketedasSLB),whowillsupportlarge-scaledeploymentofnickel-hydrogenbatterytechnologyacrossselectedglobalmarkets.Currentproductionvolumeis60MWh/year,howeverplannedfacilitiessoontobeunderconstructionwillresultinexceeding2GWh/yearbytheendof2024.
Anotherbatterytechnologywhichcouldbeofinterestiscalcium-antimony(CaSb),givenitshighenergyoutputandlowLCOSsimilartonickel-hydrogen.
Noenvironmentaldataforthistechnologywasavailable,butallthingsconsidered,itcouldbeaninterestingtechnologyforsimilarapplications.
4
Definitions
Electricalcurrent(A)
Theflow(andamount)ofelectricityinanelectricalcircuit,measuredinamperes.1Aisequaltoanelectricalflowrateof6.241509074×10¹⁸electronspersecond.
Electricalresistance(Ω)
Theoppositiontoflowofelectricalcurrentinacircuit,measuredinOhms.
Voltage(V)
Theelectromotivedrivingforceinanelectricalcircuit,measuredinVolts.Voltageistheproductofcurrentandresistance.
Electricalpower(W)
Therateelectricalenergyistransferredbyanelectricalcircuit,measuredinwatts.Poweristheproductofvoltageandcurrent.
Battery
Adevicecontaininganelectriccelloraseriesofelectriccellsstoringenergythatcanbeconvertedintoelectricalpower.
Ratedpoweroutput(kW)
Thetheoreticalmaximumamountofinstantaneouspower,measuredinkilowatts,whichcanflowintooroutofabattery.
Ratedbatterycapacityorenergyoutput(kWh)
Atheoreticalmeasureofbatterypowerdeliveredoveragiventimeperiodi.e.1kWhisequivalentto1kWofconstantpowerovertheperiodof1hour.1kWhisalsoequivalentto3.6megajoules(MJ).
Roundtripefficiency(%)
Thepercentageofenergyusedtochargethebattery(i.e.putintostorage)whichcanthenbelaterretrieved.Thisisessentiallyameasureoftheenergylostduringagivencharge-dischargecycle.
Useablebatterycapacity(kWh)
Theactualbatterypowerdeliveredoveragiventimeperiod,onceaccountingforroundtripefficiency.
C-rating(hours-1)
Thecharge/dischargerateisameasureofhowmuchtimeisrequiredtofullychargeordischargeabattery.NotethattheC-ratingofabatteryimpactspoweroutpute.g.a120kWhbatterywithaC/2ratingwillprovide60kWofpowerover2hours.AC/12equivalentwouldprovide10kWover12hours.
Batterycycle
StationaryBatteryEnergyStorageSystemsAnalysisMarch2023
Theprocessofchargingabatteryanddischargingitasrequired.Asinglechargeanddischargeisequivalentto1cycle.
Lifetimedegradation(%/lifetime)
Aprocesswhichpermanentlyreducestheamountofenergyabatterycanstore,ortheamountofpoweritcandeliver.Usuallypresentedonapercycleorperyearbasis.
Batterylifetime(yearsorcycles)
Batterylifetimeisequivalenttothenumberofcyclesbeforethebatterywilleithernolongerholdchargeorperformanceissignificantlyreduced.Thislifetimemayalsobeconvertedtoyears.
5
Context
RenewableenergyisNewZealand’slargestsourceofelectricitygeneration(82%)andprovidesapproximately41%ofNewZealand’sprimaryenergysupply.1
Ofthe7682MWofrenewableelectricitycapacityinstalledinNewZealandbytheendof2021,1703MWaregeneratedbyintermittentrenewableenergysystems(IRES).2Suchsystemsinclude:
Run-of-theriverhydropower(586MW),3whereelectricityisgeneratedfromwaterflowinginariverorstream(asopposedtoconventionalhydrowhichgeneratespowerfromthegravitationalpotentialenergyofdammedwater)†;
Wind(913MW),whereturbinesgenerateelectricityfromthewind’skineticenergy;and
Solar(205MW),wherephotovoltaic(PV)cellsconvertsunlightintoelectricalenergy.
Thekeydifferencebetweentheabovesystemsandconventionalhydropowerandgeothermalplantsisthattheyhavelittletonocapacityforenergystorageandaresubjecttoambientconditionssuchasseasonalriverflow,windspeed/directionandsolarradiation.Thismakestheseplants’electricitysupplyirregularwiththeinabilitytoco-ordinateelectricaloutputwithconsumerdemand.
StationaryBatteryEnergyStorageSystemsAnalysisMarch2023
ThereispotentialtoovercomethisissuebycombiningIRESwithstationaryenergystoragesystems(i.e.batteries).Withthiskindofhybridsystem,throughintradayshifting,anyexcessenergyproducedbythepowerplantattimesoflowdemandmaybestoredtosubsequentlysupplythegridattimesofhighdemand.Havingaccesstothisstoredrenewableenergywillminimisetheuseoffossilfuelswhenmeetingpeakdemandandalsohasthepotentialtoprovidemoreeffectiveembeddedgeneration,tomatchpeakloadandnetworkconstraints.
AraAkehasidentifiedanumberofpotentialIRESpowerplantswithinNewZealandtodemonstratesuchahybridsystemtosupportintradaygenerationshiftingandlinescompanyconstraintmanagement.Lithiumiontechnologydominatesthebattery
marketacrossmostsectors4,includingrenewableenergystorage,butitisofinteresttoAraAketounderstandthetechnicalandcommercialcharacteristicsofallthevariousbatterysolutionsavailableonthemarket,aswellasthesafetyandenvironmentalimpactsofthesetechnologies.
†ThereisanargumentthatanumberofNewZealand’slargeconventionalhydroelectricplantsareessentiallyrun-of-the-riverbecauseoftheirlimitedstorage,howeveradistinctionismadethatiftheriverisimpoundedtocreateareservoirofsignificantsizethentheplantistechnicallynotrun-of-the-river.5
6
ExamplesofBESSprojectsandinstallations
Bytheendof2021,theinstalledcapacityofgrid-scaleBESSaroundtheworldexceeded16GWandglobalinvestmentsapproached$10billionUSD6.Somerecentexamplesofbothdomesticandinternationalrenewableenergybatterystoragehybridprojectsinclude:
InMarch2022,WELNetworksandInfratecannouncedthattheyhadenteredintomajorcontractsforthesupplyandbuildofNewZealand’sfirstrenewableenergyBESShybrid7.Alongwiththeproposedbatteryfacility,consistingofa35MWlithiumionunitfromSAFT,anewsolarfarmisbeingexploredtoreducethecostofrenewablepowerforconsumers.ConstructionbeganinAugust2022and,oncecommissioned,thefacilitywillstoreenoughenergytomeetthedailydemandsofover2,000homesandwillbecapableofprovidingfastreservessupportfortheNorthIslandgrid.
AESChilesubmittedanEnvironmentalImpactAssessmentinlateFebruary2023foran$800MUSDhybridparkintheAntofagastaregion.Theprojectwillinvolvetheconstructionofa140MWwindfarm,252MWofsolaranda623.5MW,3,100MWhlithiumionBESS8.ThisproposedBESShybridfollowsonfromthe2019installationofa10MW,50MWhlithiumionenergystoragesystematits178MWhrun-of-the-riverhydropowerfacilityattheCordilleraComplexnearSantiago,Chile.Priortothis2019
installation,AESChile(thenAESGener)conductedananalysisonarangeofstorageoptions,finallychoosinglithiumionbatteriesbecausethetechnologyisscalingexponentiallyandwasmostfavourableintheirassessmentwhenconsideringfactorsincludingcost,safety,energydensity,charginganddischargingrates,andoveralllifecycle.9
InJanuary2023,RWE,aGermanenergyprovider,commissioned117MW,128MWhoflithiumionbatteriesacrosstwooftheirrun-of-the-riverplants.10Thesystems
atGersteinwerkinWerneandEmslandstationinLingenhaveenergycapacitiesof79MWhand49MWhrespectively.Throughtheseinstallations,RWEcanmake
additionalelectricitycapacityavailabletothegridandalsobalancetheflowofenergyfromthepowerstations,helpingtokeepthefrequencyofthepowergridstable.
NewZealandgentailer,MeridianEnergy,announcedinDecember2022thatconstructionoftheRuakākāBESSatMarsdenPointwillbegininQ12023.11Uponcompletionandcommissioning(expectedH22024),the100MW,200MWhSAFTlithiumionunitwillbehybridisedwithanew130MWsolarPVplanttoreducecosts.12
PortlandGeneralElectriccommissionedtheUnitedStates’firstfacilitytoco-locatewindandsolargeneration,coupledwithbatterystorage,inSeptember2022.13TheWheatridgeRenewableEnergyFacilityhasa300MWwindfarm,a120MWsolarfarmanda120MWhlithiumionBESS.Atmaximumoutput,thefacilitylocatednearLexington,Oregonproducesmorethanhalfofthepowerthatwasgeneratedby
Oregon’slastcoalplant(demolishedthesamemonththisfacilitybecameoperational)orenoughemissions-freeenergytopowerabout100,000homes.14
Theexampleslistedherereflectthatlithiumionbatterystoragecurrentlyexhibitsacleardominanceintherechargeablebatterymarket,accountingformorethan90%ofallBESSdeploymentsinboth2020and2021.6Thisdominancehoweverislikelyduetoavarietyoffactors,suchasmanufacturingcapability,asmanynewertechnologiescapableofcompetingwithlithiumiononatechnicalandcommercialleveldonotyethavethemanufacturingcapacitytosupplylargeMW-scaleenergystoragesystems.
7
Technologiesandmanufacturers
Ananalysishasbeenconductedonstationary,longdurationbatterysolutionssuitableforapplicationtointermittentrenewableenergysystems.
Atypical20ftcontainerisedBESSproducinggreaterthan100kWhofenergy,over12hoursorless,hasbeenusedasabaselineforthisanalysis,soonlyperceivedcompetitorstosuchaproducthavebeenincluded.
Thebatterysolutionsandmanufacturerswhichhavebeenidentifiedaredetailedinthesubsequentsection.Althoughidentifiedhere,somecompaniesassociatedwiththetechnologiesofinterestdonotprovidesufficientinformationtoallowforanykindofanalyticalcomparisonbetweenproductsandthereforehavenotbeenincludedintheanalysis.
Lithiumionbatteries
Lithiumionbatteriesutilisesolidelectrodesoftypicallycarbonandmetaloxidewithaliquidorganicelectrolytecontainingadissolvedmetalsalt.Metalionstravelbetween
Redoxflowbatteries(RFB)
InRFBs,redox(reductionandoxidation)reactionswithinelectrochemicalcellsenablesenergytobestoredinaflowingliquidelectrolytesolutionduringbatterychargeanddischarge.Batterypowerisdependentuponthesizeoftheelectrochemicalstack,whereasbatteryenergydependsuponthevolumeofelectrolyte.Thisseparation
ofpowerandenergyisakeydistinctionandadvantageofRFBswhencomparedtootherelectrochemicalstoragesystemsassystemvulnerabilitytouncontrolledenergyreleaseislimitedbysystemarchitecturetoafewpercentofthetotalenergystored.22
Vanadium(VRFB)
CellCube23
InvintyEnergySystems24
RongkePower25
VRBEnergy26
electrodesviaaporousmembrane,generatinganelectricalcurrent.15Thetwomostcommonchemistriesarelithiumironphosphate(LFP)andnickelmanganesecolbolt(NMC).ManufacturersaremovingmoretowardstheformerasdespiteNMCtypicallyhavingahigherenergydensity,LFPischeapertoproduce,hasalongerlifecycleandislesssusceptibletothermalrunaway.
Lithiumion
CATL16
CorvusEnergy17
Eaton18
Zinc-Bromide(ZnBr2
Redflow27
Zinc-Air
Zinc828
Ironflow(IFB)
ESS29
Organic(non-metal)
flow)
EVLO19
SAFT20
Tesla21
CERQ(formerlyJenaBatteries)30
8
Moltensaltbatteries
Thesebatteriesoperatewellinexcessof1000Candtheanodeandcathodearetypicallyliquidseparatedbyasaltelectrolyteorceramicmembranecapableofconductingmetalionstogenerateanelectricalcurrent.
Calcium-Antimony(CaSb)
Ambri31
Sodium-Nickel-Chloride(NaNiCl2)
FZSoNick32
SodiumSulphur(NaS)
NGKInsulators33
Othermetalbatteries
Nickel-Hydrogen(NiH2)
Nickelhydroxideandnickelalloyelectrodesinthepresenceofanalkalineelectrolytecreateanelectricalcharge,producingandconsuminghydrogengasonchargeanddischarge.
SLB(partneredwithEnerVenue)34,35
Zinc-Bromide(ZnBr2non-flow)
Typicallyaredoxflowbatterychemistry,oxidationreductionchemistryoccursbetweenzincandbromideelectrodesviaeitherasolidgeloraqueouselectrolyteallowingzincionstoflowthroughamembrane,subsequentlygeneratingcurrent.
EOSEnergyEnterprises36
Gelion37
Lead(Pb)
Interestingly,nolead-basedbatterieshavebeenidentifiedinthisparticularspace,likelyduetothechemistry’slowenergydensity,shortlifetimeand,asaresult,highpricewhencomparedtolithium-ion,thedominantchemistryintoday’sbatterymarket.
Non-metalbatteries
Conductivepolymer
Solidcarbon-graphenehybridelectrodescombinedwithaliquidelectrolyteandapermeableseparatingmembraneenableionstotravelbetweentheanodeandcathode,creatingelectricalcurrent.
PolyJoule38
9
Commercialisationconsiderations
TheprevioussectiondetailsasubsetoftheplayersinthestationaryBESSmarket,howeveranimportantdiscussionpointbeyondthechemistryishowfarthroughthecommercialisationjourneyareeachofthesechemistriesand/orcompanies.
Table1detailsanumberofkeycommercialisationmetricswhichhavebeenidentifiedacrossthemanufacturerslistedintheprevioussection.Thesemetricsincludeyearfounded,installedbatteryvolume(inMWh),numberofemployees,revenue(in$MUSD,ifany),annualproductionvolumeandtotalagreedprojectpipeline(bothinMWh).
SomeimportantthingstonoteisthatanumberofthesecompanieshavebusinessinterestsoutsideofstationaryBESS,sothenumberspresentedmaynotnecessarilybeadirectresultoftheiractivitiesrelatedtoBESS.Also,althoughtheremay
beasignificantdifferenceinsomevaluespresentedwhencomparedtoothermanufacturers,thisdoesnotnecessarilymeanthattheyareatdifferentstagesofcommercialisation,itmaysimplyreflectothermarketindicatorssuchasmarketshare(i.e.twoBESScompanieswith200and2000employeesmaybesimilarlycommercialisedwithinthemarket.Athirdcompanywith20employeesislikelysignificantlylesscommercialised).Nevertheless,themetricspresentedprovidereasonableproxiestoindicateacompany’sstageofcommercialisation.
Similarlytotheprevioussection,althoughidentified,somecompaniesassociatedwiththetechnologiesofinterestdonotprovidesufficientcommercialinformationinthepublicdomaintoallowforanykindofanalyticalcomparisonbetweenproductsandthereforehavenotbeenincluded.Inthemajorityofcases,eachcompanypresenteddoesnotdetaileachandeverymetricofinterestinthepublicdomain,howevertheydoprovideenoughtomakeaneducatedcomparison.
Estimatesofcommercialisationstagemaybemappedagainstthe11-pointtechnologyreadinesslevel(TRL)scalepresentedbytheInternationalEnergyAgency
(seeFigure1).39
Figure1:TechnologyReadinessLevel(IEA)
10
TherangewhichisrelevanttothemanufacturersincludedisestimatedtobeTRL7toTRL11,pre-commercialdemonstrationtomatureinmarket:
TRL11:Matureinmarket(verylargeproductvolumesmanufactured,deliveredanddemonstratedinfieldi.e.>1GWh,revenuelikely>$50MUSD)
CATL
CorvusEnergy
NGKInsulators
RongkePower
SAFT
Tesla
TRL10:Earlyadoptioninmarket(largeproductvolumesmanufactured,deliveredanddemonstratedinfieldi.e.100MWh-1GWh,revenuelikely$10M-$50MUSD)
CellCube
EOSEnergyEnterprises
FZSoNick(acquiredbyHitachiChemical-$5.8BUSDrevenuein2021)
TRL9:Commercialoperation(significantproductvolumesmanufactured,deliveredanddemonstratedinfieldi.e.10MWh-100MWh,revenuelikely$1M-$10MUSD)
InvintyEnergySystems
VRBEnergy
TRL8:Commercialdemonstration(smallproductvolumesunderdemonstrationwithsignificantgrowthinmanufacturingi.e.1MWh-10MWh,revenuelikely$100K-$1MUSD)
Ambri
EnerVenue(globallybrandedasSLB-$28.1BUSDrevenuein2022)
ESS
Redflow
TRL7:Pre-commercialdemonstration(onlysmallproductvolumesmanufactured,deliveredanddemonstratedinfield,minimalorpre-revenue)
Gelion
PolyJoule
Zinc8
SometakeawaysfromthisTRLmappinginclude:
Oldertechnologies,withfewerrecentdevelopments,suchaslithiumion,vanadiumflowandmoltensodiumbatteriesarehigheruptheTRLscale.
Ofthenewertechnologies,EOSEnergyEnterprises(non-flowzinc-bromide)appearstohaveasignificantcommercialadvantageoveritscompetitors,generatingover
$10MUSDinrevenuein2022withatleasta1.8GWhprojectpipeline.
CompanieslowerontheTRLscale(TRL7-8)willhaveasignificantnumberofcommercialisationbarriers(forexample,manufacturingandsupplychain)tocrossbeforegainingearlyadoptioninthemarket.Thiswillbesignificantlymore
challengingforindependentcompanieswhencomparedto,forexample,EnerVenue(nickel-hydrogen),whohavebackingfromglobal,multibilliondollarengineeringcompany,Schlumberger(nowmarketedasSLB).
11
Table1:Commercialmetricsofbatterymanufacturers
Chemistry
Manufacturer
Founded
Dispatchedvolume
Employees
Revenue*
Productionvolume
Pipelinevolume
Year
MWh
#
$MUSD/year
MWh/year
MWh
14,36440
(Additional140,000peryearunderconstruction)
-
61
(2020)41
>1,000
-
780
(58MforBESS)42
170,000
(Totalplannedproduction
-
81,462
40,000(Megapackonly)
-
Approx.
CATL
2011
-
33,000
CorvusEnergy
2009
400
192
SAFT
1918
-
>4,000
Tesla
2003
>17,000
128,000
170,000
Lithiumion
by2025)
(10,000non-automotive)43
CellCube
2008
42.9
61
4.09(2019)44
-
-
InvintyEnergySystems
2020
28.0
171
3.245
-
66.3
Vanadium RongkePower
2008
992
-
-
300
-
VRBEnergy
2007
>30
65
-
-
>500
EOSEnergyStorage
2008
640
250
18.4
800
>1,800
Gelion
2015
Pilotscale#
50
0.4346
2
-
Zinc-based Redflow
2005
>2
62
1.1247
80
-
by2024)48
by2024)
FZSoNick49
2011
400
130
32.2(2019)50
100
-
NGKInsulators51
1919
4,100
20,100
4041
1,000
-
Zinc8 2011 Pilotscale 44 0(Goaltogenerate
1(Ambitionof60MWh -
Sodium-based
Ironflow ESS 2011 - 183 0.8752 750 >12,00053
endof2023)
Calcium-Antimony Ambri 2010 Commercialpilot# 122 - 200(200,000cellsby
2024;31,000by2027)
Nickel-Hydrogen EnerVenue(SLB) 2020 Commercialpilot 110 - 60(2,200plannedby
>1,20054
>5,00055
Organic PolyJoule 2011 Pilotscale 11 - >1(10000cells) <1
* RevenuedatahasbeengainedfromGoogleFinanceQ32021toQ32022,unlessspecifiedotherwise.Unknowndatanotavailableinthepublicdomainhasbeenindicatedwithadash.
# Pilotscalereferstoinstallationslessthan1MWh.Commercialpilotreferstoinstallationsbetween1–2MWh. 12
Analysis
Thedatapresentedinthissectioniseitherpubliclyavailableorhasbeengainedthroughdirectconsultationwiththemanufacturer.Forthosetechnologieswithmultipleplayers(i.e.lithiumionandvanadiumflow),batterydatahasbeenaggregatedandaveragevaluesarepresented.Theraw,non-aggregateddataisprovidedintablesintheAppendix.
Technicalcomparison
Effectiveenergydensity
Theenergydensityofbatteriesistypicallypresentedinwatt-hourspergram(Wh/gorkWh/kg).Thisprovidesareasonablecomparisonwhentheuseableenergyoutputandweightofthebatteryisknown,however,inthecaseofcontainerisedenergystoragesystems,thereissignificantvoidagewithinthecontainerforthepurposeofmaintenance,airflowetc.Thismeansthatonlyaneffectiveenergydensitycanbedeterminedusingtheuseableenergyoutputandtheweightofthecontainerisedsystem.
Thisapproachisalsochallengingassomemanufacturersdonotprovidetheweightofthecontainerisedsystem,however,allprovidetheareafootprintofthesystemforagivenenergyoutput,enablinganeffectiveenergydensityofkWh/m2tobepresentedinFigure2.Notethatanadvantageofcontainerisedsystemsisthattheymaybestacked,however,forthepurposeofthiscomparison,thefootprintdensityhasonlybeenpresentedforasystemwithasinglecontainer.
Lithiumionhasthehighestaverageenergydensityofthetechnologiescomparedatapproximately145kWh/m2.Thisobservationisnotsurprisingaslithiumionisknownforhavingaparticularlyhighenergydensitywhencomparedtootherrenewablebatterytechnologies.56Thisisthenfollowedbymolten-saltbatteries(calcium-antimony,sodium-nickel-chloride,sodium-sulphur),whicharealsoknownforhighenergydensities,57atapproximately80kWh/m2.Zinc-brominetechnology,inbothflowandnon-flowbatteryconfigurations,hasaneffectiveenergydensityof30kWh/m2.Thisdensityissimilartonickel-hydrogen(25kWh/m2),butmuchhigherthanotherflowchemistries(Vanadium,10kWh/m2;Iron,15kWh/m2).Duetoitsearlystageofdevelopment,theconductivepolymerbatteryhasalowenergydensityof15kWh/m2,similartoverylargeredoxflowsystems.
Figure2:Effectiveenergydensityofbatterytechnologies
150
Effectiveenergydensity(kWh/m2)
100
50
0
13
Batterycycling
Thelifetimeofabatteryismeasuredbythetotalnumberofcharge/dischargecyclesabatterycanachievebefore:
Thebatterycannolongerholdacharge;or
Significantenergycapacitydegradationhasoccurred.
Ofthebatterytechnologiesinvestigated(seeFigure3),nickel-hydrogeniscapableofachievingatleast30,000cyclesinitslifetime.Thisisfollowedbyvanadiumandironredoxflowbatterieswithlifetimesofapproximately20,000cycles.Allother
technologieshaveatheoreticallifetimelessthan12,000cycles,withthemajoritylessthan7,000cycles.
Forthisresearch,itisofparticularinteresttounderstandwhichbatterytechnologyissuitableformultiplecyclesonagivenday.Somebatterymanufacturersstatethattheirtechnologyiscapableofanunlimitednumberofdailycyclesdespitestatingaverylonglifetimeinyears(whichdoesnotalignwiththetheoreticalcyclelifetime).Asaresult,somebatterytechnologiescapableofmultiplecyclingperdayareonlyabletodosobysignificantlydecreasingtheyearsofuseablebatterylife.
Toconductafaircomparison,theannualcyclesofagiventechnologyhasbeendeterminedbydividingthetheoreticalcyclelifeofthebatterybythedesignlifeti
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论