2023储能电站分析_第1页
2023储能电站分析_第2页
2023储能电站分析_第3页
2023储能电站分析_第4页
2023储能电站分析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

StationaryBatteryEnergyStorageSystemsAnalysis

Afocusonintradayshifting

March2023

Contents

Preface 3

Anoteontheanalysis 3

Summary 4

Recommendations 4

Definitions 5

Context 6

ExamplesofBESSprojectsandinstallations 7

Technologiesandmanufacturers 8

Lithiumionbatteries 8

Redoxflowbatteries(RFB) 8

Moltensaltbatteries 9

Othermetalbatteries 9

Non-metalbatteries 9

Commercialisationconsiderations 10

Analysis 13

Technicalcomparison 13

Commercialcomparison 17

Environmentalcomparison 19

Safetycomparison 21

Conclusionandrecommendations 22

Appendix 23

References 25

Preface

Thepurposeofthisdocumentistoprovideatechnicalandcommercialcomparisonofvariousbatteryenergystoragesystem(BESS)chemistrieswhicharecurrentlyavailableonthemarketsuitableforintradayshifting.

WhensuchaBESSiscombinedwithanintermittentrenewableenergysystemwithnoinherentstorage(wind,solar,run-of-the-riverhydro),throughouttheday,theresultinghybridsystemcandivertanyexcessenergyproducedattimesoflowdemandtostorage.TheBESScansubsequentlysupplythegridattimesofhighdemand,whilstalsominimisingtheuseoffossilfuelswhenattemptingtomatchpeakdemandandovercomenetworkconstraints.

Anoteontheanalysis

TheanalysispresentedinthisdocumentwasconductedinternallybyAraAkeinQ42022,andassuch,onlyshowsasnapshotoftheBESSmarketintime.DuetothesignificantgrowthandinnovationoccurringintheBESSmarket,dependinguponwhenthisdocumentispickedupbythereader,theresultsthroughoutregardingthechemistriespresentedmaybeoutofdate.

3

Summary

RenewableenergyisNewZealand’slargestsourceofelectricitygeneration(82%)andprovidesapproximately41%ofNewZealand’sprimaryenergysupply.1Of

theinstalledrenewableelectricitycapacity,20%isassociatedwithintermittentrenewableenergysystems(IRES)withlittletonocapacityforenergystorage.2

ThereispotentialtoovercomethisissuebycombiningIRESwithstationaryenergystoragesystems(i.e.batteries).Withthiskindofhybridsystem,throughintradayshifting,anyexcessenergyproducedbytheplantattimesoflowdemandmaybestoredtosubsequentlysupplythegridattimesofhighdemand,whilstalsominimisingtheuseoffossilfuelswhenattemptingtomatchpeakdemandandovercomenetworkconstraints.

AraAkehasidentifiedanumberofpotentialIRESpowerplantswithinNewZealandtodemonstratesuchahybridsystem.Lithiumiontechnologydominatesthebattery

marketacrossmostsectors,3includingrenewableenergystorage,butitisofinteresttoAraAketounderstandthetechnicalandcommercialcharacteristicsofallthevariousbatterysolutionsavailableonthemarket,aswellasthesafetyandenvironmentalimpactsofthesetechnologies.

Recommendations

Ofthemorethan10containerisedBESSstudied,nickel-hydrogen(NiH2)isastandoutchemistryforstorageof12hoursorlesswhenconsideringallaspectsduetoauseablelifetimeof30yearsand30,000charge/dischargecycles.

Onafootprintbasis,nickel-hydrogeniscompetitiveintermsofuseableannualenergyoutputwithhigherenergydensitylithiumionandmoltensaltbatterychemistries.Onalifetimebasis,nickel-hydrogenhasamongthehighestenergyoutputofalltechnologiesstudied,beatingallmanufacturers,buttwolithiumionofferings(CATLandTesla).

Nickel-hydrogenisdesignedforuptothreecharge/dischargecyclesperday,yetisalsocapableofdischargeratesvaryingbetween2and12hours.Competitorshavesimilarcharge/dischargerates,butareonlydesignedforamaximumofonetotwocyclesperdaybeforesignificantlyimpactingbatterylifetime.

Fromacostperspective,nickel-hydrogenisthebestvaluefor12hoursorlessofstoragewhencomparingthelevelisedcostofstorage(LCOS)ofthetechnologies,ameasureofthetotalcostofanenergystoragesystemagainsttheenergydischargedoverthebattery’slifetime.

Theestimatedenvironmentalimpactofthebatteryiscomparabletoanumberofcompetitors,butsignificantlylowerthanlithiumion.

Thenickel-hydrogentechnologyhaspassedallrelevantbatterysafetystandards,includingtheUL9540Atestforthermalrunaway.Manynewbatterytechnologieshavepassedthistest,however,fewlithiumionmanufacturershavewithonlyasinglecontainerisedlithiumionbatterymanufacturerintheUL9540Adatabase(EVLO).

Themanufacturer,EnerVenue,hasbeenbackedbymultibilliondollarengineeringcompany,Schlumberger(marketedasSLB),whowillsupportlarge-scaledeploymentofnickel-hydrogenbatterytechnologyacrossselectedglobalmarkets.Currentproductionvolumeis60MWh/year,howeverplannedfacilitiessoontobeunderconstructionwillresultinexceeding2GWh/yearbytheendof2024.

Anotherbatterytechnologywhichcouldbeofinterestiscalcium-antimony(CaSb),givenitshighenergyoutputandlowLCOSsimilartonickel-hydrogen.

Noenvironmentaldataforthistechnologywasavailable,butallthingsconsidered,itcouldbeaninterestingtechnologyforsimilarapplications.

4

Definitions

Electricalcurrent(A)

Theflow(andamount)ofelectricityinanelectricalcircuit,measuredinamperes.1Aisequaltoanelectricalflowrateof6.241509074×10¹⁸electronspersecond.

Electricalresistance(Ω)

Theoppositiontoflowofelectricalcurrentinacircuit,measuredinOhms.

Voltage(V)

Theelectromotivedrivingforceinanelectricalcircuit,measuredinVolts.Voltageistheproductofcurrentandresistance.

Electricalpower(W)

Therateelectricalenergyistransferredbyanelectricalcircuit,measuredinwatts.Poweristheproductofvoltageandcurrent.

Battery

Adevicecontaininganelectriccelloraseriesofelectriccellsstoringenergythatcanbeconvertedintoelectricalpower.

Ratedpoweroutput(kW)

Thetheoreticalmaximumamountofinstantaneouspower,measuredinkilowatts,whichcanflowintooroutofabattery.

Ratedbatterycapacityorenergyoutput(kWh)

Atheoreticalmeasureofbatterypowerdeliveredoveragiventimeperiodi.e.1kWhisequivalentto1kWofconstantpowerovertheperiodof1hour.1kWhisalsoequivalentto3.6megajoules(MJ).

Roundtripefficiency(%)

Thepercentageofenergyusedtochargethebattery(i.e.putintostorage)whichcanthenbelaterretrieved.Thisisessentiallyameasureoftheenergylostduringagivencharge-dischargecycle.

Useablebatterycapacity(kWh)

Theactualbatterypowerdeliveredoveragiventimeperiod,onceaccountingforroundtripefficiency.

C-rating(hours-1)

Thecharge/dischargerateisameasureofhowmuchtimeisrequiredtofullychargeordischargeabattery.NotethattheC-ratingofabatteryimpactspoweroutpute.g.a120kWhbatterywithaC/2ratingwillprovide60kWofpowerover2hours.AC/12equivalentwouldprovide10kWover12hours.

Batterycycle

StationaryBatteryEnergyStorageSystemsAnalysisMarch2023

Theprocessofchargingabatteryanddischargingitasrequired.Asinglechargeanddischargeisequivalentto1cycle.

Lifetimedegradation(%/lifetime)

Aprocesswhichpermanentlyreducestheamountofenergyabatterycanstore,ortheamountofpoweritcandeliver.Usuallypresentedonapercycleorperyearbasis.

Batterylifetime(yearsorcycles)

Batterylifetimeisequivalenttothenumberofcyclesbeforethebatterywilleithernolongerholdchargeorperformanceissignificantlyreduced.Thislifetimemayalsobeconvertedtoyears.

5

Context

RenewableenergyisNewZealand’slargestsourceofelectricitygeneration(82%)andprovidesapproximately41%ofNewZealand’sprimaryenergysupply.1

Ofthe7682MWofrenewableelectricitycapacityinstalledinNewZealandbytheendof2021,1703MWaregeneratedbyintermittentrenewableenergysystems(IRES).2Suchsystemsinclude:

Run-of-theriverhydropower(586MW),3whereelectricityisgeneratedfromwaterflowinginariverorstream(asopposedtoconventionalhydrowhichgeneratespowerfromthegravitationalpotentialenergyofdammedwater)†;

Wind(913MW),whereturbinesgenerateelectricityfromthewind’skineticenergy;and

Solar(205MW),wherephotovoltaic(PV)cellsconvertsunlightintoelectricalenergy.

Thekeydifferencebetweentheabovesystemsandconventionalhydropowerandgeothermalplantsisthattheyhavelittletonocapacityforenergystorageandaresubjecttoambientconditionssuchasseasonalriverflow,windspeed/directionandsolarradiation.Thismakestheseplants’electricitysupplyirregularwiththeinabilitytoco-ordinateelectricaloutputwithconsumerdemand.

StationaryBatteryEnergyStorageSystemsAnalysisMarch2023

ThereispotentialtoovercomethisissuebycombiningIRESwithstationaryenergystoragesystems(i.e.batteries).Withthiskindofhybridsystem,throughintradayshifting,anyexcessenergyproducedbythepowerplantattimesoflowdemandmaybestoredtosubsequentlysupplythegridattimesofhighdemand.Havingaccesstothisstoredrenewableenergywillminimisetheuseoffossilfuelswhenmeetingpeakdemandandalsohasthepotentialtoprovidemoreeffectiveembeddedgeneration,tomatchpeakloadandnetworkconstraints.

AraAkehasidentifiedanumberofpotentialIRESpowerplantswithinNewZealandtodemonstratesuchahybridsystemtosupportintradaygenerationshiftingandlinescompanyconstraintmanagement.Lithiumiontechnologydominatesthebattery

marketacrossmostsectors4,includingrenewableenergystorage,butitisofinteresttoAraAketounderstandthetechnicalandcommercialcharacteristicsofallthevariousbatterysolutionsavailableonthemarket,aswellasthesafetyandenvironmentalimpactsofthesetechnologies.

†ThereisanargumentthatanumberofNewZealand’slargeconventionalhydroelectricplantsareessentiallyrun-of-the-riverbecauseoftheirlimitedstorage,howeveradistinctionismadethatiftheriverisimpoundedtocreateareservoirofsignificantsizethentheplantistechnicallynotrun-of-the-river.5

6

ExamplesofBESSprojectsandinstallations

Bytheendof2021,theinstalledcapacityofgrid-scaleBESSaroundtheworldexceeded16GWandglobalinvestmentsapproached$10billionUSD6.Somerecentexamplesofbothdomesticandinternationalrenewableenergybatterystoragehybridprojectsinclude:

InMarch2022,WELNetworksandInfratecannouncedthattheyhadenteredintomajorcontractsforthesupplyandbuildofNewZealand’sfirstrenewableenergyBESShybrid7.Alongwiththeproposedbatteryfacility,consistingofa35MWlithiumionunitfromSAFT,anewsolarfarmisbeingexploredtoreducethecostofrenewablepowerforconsumers.ConstructionbeganinAugust2022and,oncecommissioned,thefacilitywillstoreenoughenergytomeetthedailydemandsofover2,000homesandwillbecapableofprovidingfastreservessupportfortheNorthIslandgrid.

AESChilesubmittedanEnvironmentalImpactAssessmentinlateFebruary2023foran$800MUSDhybridparkintheAntofagastaregion.Theprojectwillinvolvetheconstructionofa140MWwindfarm,252MWofsolaranda623.5MW,3,100MWhlithiumionBESS8.ThisproposedBESShybridfollowsonfromthe2019installationofa10MW,50MWhlithiumionenergystoragesystematits178MWhrun-of-the-riverhydropowerfacilityattheCordilleraComplexnearSantiago,Chile.Priortothis2019

installation,AESChile(thenAESGener)conductedananalysisonarangeofstorageoptions,finallychoosinglithiumionbatteriesbecausethetechnologyisscalingexponentiallyandwasmostfavourableintheirassessmentwhenconsideringfactorsincludingcost,safety,energydensity,charginganddischargingrates,andoveralllifecycle.9

InJanuary2023,RWE,aGermanenergyprovider,commissioned117MW,128MWhoflithiumionbatteriesacrosstwooftheirrun-of-the-riverplants.10Thesystems

atGersteinwerkinWerneandEmslandstationinLingenhaveenergycapacitiesof79MWhand49MWhrespectively.Throughtheseinstallations,RWEcanmake

additionalelectricitycapacityavailabletothegridandalsobalancetheflowofenergyfromthepowerstations,helpingtokeepthefrequencyofthepowergridstable.

NewZealandgentailer,MeridianEnergy,announcedinDecember2022thatconstructionoftheRuakākāBESSatMarsdenPointwillbegininQ12023.11Uponcompletionandcommissioning(expectedH22024),the100MW,200MWhSAFTlithiumionunitwillbehybridisedwithanew130MWsolarPVplanttoreducecosts.12

PortlandGeneralElectriccommissionedtheUnitedStates’firstfacilitytoco-locatewindandsolargeneration,coupledwithbatterystorage,inSeptember2022.13TheWheatridgeRenewableEnergyFacilityhasa300MWwindfarm,a120MWsolarfarmanda120MWhlithiumionBESS.Atmaximumoutput,thefacilitylocatednearLexington,Oregonproducesmorethanhalfofthepowerthatwasgeneratedby

Oregon’slastcoalplant(demolishedthesamemonththisfacilitybecameoperational)orenoughemissions-freeenergytopowerabout100,000homes.14

Theexampleslistedherereflectthatlithiumionbatterystoragecurrentlyexhibitsacleardominanceintherechargeablebatterymarket,accountingformorethan90%ofallBESSdeploymentsinboth2020and2021.6Thisdominancehoweverislikelyduetoavarietyoffactors,suchasmanufacturingcapability,asmanynewertechnologiescapableofcompetingwithlithiumiononatechnicalandcommercialleveldonotyethavethemanufacturingcapacitytosupplylargeMW-scaleenergystoragesystems.

7

Technologiesandmanufacturers

Ananalysishasbeenconductedonstationary,longdurationbatterysolutionssuitableforapplicationtointermittentrenewableenergysystems.

Atypical20ftcontainerisedBESSproducinggreaterthan100kWhofenergy,over12hoursorless,hasbeenusedasabaselineforthisanalysis,soonlyperceivedcompetitorstosuchaproducthavebeenincluded.

Thebatterysolutionsandmanufacturerswhichhavebeenidentifiedaredetailedinthesubsequentsection.Althoughidentifiedhere,somecompaniesassociatedwiththetechnologiesofinterestdonotprovidesufficientinformationtoallowforanykindofanalyticalcomparisonbetweenproductsandthereforehavenotbeenincludedintheanalysis.

Lithiumionbatteries

Lithiumionbatteriesutilisesolidelectrodesoftypicallycarbonandmetaloxidewithaliquidorganicelectrolytecontainingadissolvedmetalsalt.Metalionstravelbetween

Redoxflowbatteries(RFB)

InRFBs,redox(reductionandoxidation)reactionswithinelectrochemicalcellsenablesenergytobestoredinaflowingliquidelectrolytesolutionduringbatterychargeanddischarge.Batterypowerisdependentuponthesizeoftheelectrochemicalstack,whereasbatteryenergydependsuponthevolumeofelectrolyte.Thisseparation

ofpowerandenergyisakeydistinctionandadvantageofRFBswhencomparedtootherelectrochemicalstoragesystemsassystemvulnerabilitytouncontrolledenergyreleaseislimitedbysystemarchitecturetoafewpercentofthetotalenergystored.22

Vanadium(VRFB)

CellCube23

InvintyEnergySystems24

RongkePower25

VRBEnergy26

electrodesviaaporousmembrane,generatinganelectricalcurrent.15Thetwomostcommonchemistriesarelithiumironphosphate(LFP)andnickelmanganesecolbolt(NMC).ManufacturersaremovingmoretowardstheformerasdespiteNMCtypicallyhavingahigherenergydensity,LFPischeapertoproduce,hasalongerlifecycleandislesssusceptibletothermalrunaway.

Lithiumion

CATL16

CorvusEnergy17

Eaton18

Zinc-Bromide(ZnBr2

Redflow27

Zinc-Air

Zinc828

Ironflow(IFB)

ESS29

Organic(non-metal)

flow)

EVLO19

SAFT20

Tesla21

CERQ(formerlyJenaBatteries)30

8

Moltensaltbatteries

Thesebatteriesoperatewellinexcessof1000Candtheanodeandcathodearetypicallyliquidseparatedbyasaltelectrolyteorceramicmembranecapableofconductingmetalionstogenerateanelectricalcurrent.

Calcium-Antimony(CaSb)

Ambri31

Sodium-Nickel-Chloride(NaNiCl2)

FZSoNick32

SodiumSulphur(NaS)

NGKInsulators33

Othermetalbatteries

Nickel-Hydrogen(NiH2)

Nickelhydroxideandnickelalloyelectrodesinthepresenceofanalkalineelectrolytecreateanelectricalcharge,producingandconsuminghydrogengasonchargeanddischarge.

SLB(partneredwithEnerVenue)34,35

Zinc-Bromide(ZnBr2non-flow)

Typicallyaredoxflowbatterychemistry,oxidationreductionchemistryoccursbetweenzincandbromideelectrodesviaeitherasolidgeloraqueouselectrolyteallowingzincionstoflowthroughamembrane,subsequentlygeneratingcurrent.

EOSEnergyEnterprises36

Gelion37

Lead(Pb)

Interestingly,nolead-basedbatterieshavebeenidentifiedinthisparticularspace,likelyduetothechemistry’slowenergydensity,shortlifetimeand,asaresult,highpricewhencomparedtolithium-ion,thedominantchemistryintoday’sbatterymarket.

Non-metalbatteries

Conductivepolymer

Solidcarbon-graphenehybridelectrodescombinedwithaliquidelectrolyteandapermeableseparatingmembraneenableionstotravelbetweentheanodeandcathode,creatingelectricalcurrent.

PolyJoule38

9

Commercialisationconsiderations

TheprevioussectiondetailsasubsetoftheplayersinthestationaryBESSmarket,howeveranimportantdiscussionpointbeyondthechemistryishowfarthroughthecommercialisationjourneyareeachofthesechemistriesand/orcompanies.

Table1detailsanumberofkeycommercialisationmetricswhichhavebeenidentifiedacrossthemanufacturerslistedintheprevioussection.Thesemetricsincludeyearfounded,installedbatteryvolume(inMWh),numberofemployees,revenue(in$MUSD,ifany),annualproductionvolumeandtotalagreedprojectpipeline(bothinMWh).

SomeimportantthingstonoteisthatanumberofthesecompanieshavebusinessinterestsoutsideofstationaryBESS,sothenumberspresentedmaynotnecessarilybeadirectresultoftheiractivitiesrelatedtoBESS.Also,althoughtheremay

beasignificantdifferenceinsomevaluespresentedwhencomparedtoothermanufacturers,thisdoesnotnecessarilymeanthattheyareatdifferentstagesofcommercialisation,itmaysimplyreflectothermarketindicatorssuchasmarketshare(i.e.twoBESScompanieswith200and2000employeesmaybesimilarlycommercialisedwithinthemarket.Athirdcompanywith20employeesislikelysignificantlylesscommercialised).Nevertheless,themetricspresentedprovidereasonableproxiestoindicateacompany’sstageofcommercialisation.

Similarlytotheprevioussection,althoughidentified,somecompaniesassociatedwiththetechnologiesofinterestdonotprovidesufficientcommercialinformationinthepublicdomaintoallowforanykindofanalyticalcomparisonbetweenproductsandthereforehavenotbeenincluded.Inthemajorityofcases,eachcompanypresenteddoesnotdetaileachandeverymetricofinterestinthepublicdomain,howevertheydoprovideenoughtomakeaneducatedcomparison.

Estimatesofcommercialisationstagemaybemappedagainstthe11-pointtechnologyreadinesslevel(TRL)scalepresentedbytheInternationalEnergyAgency

(seeFigure1).39

Figure1:TechnologyReadinessLevel(IEA)

10

TherangewhichisrelevanttothemanufacturersincludedisestimatedtobeTRL7toTRL11,pre-commercialdemonstrationtomatureinmarket:

TRL11:Matureinmarket(verylargeproductvolumesmanufactured,deliveredanddemonstratedinfieldi.e.>1GWh,revenuelikely>$50MUSD)

CATL

CorvusEnergy

NGKInsulators

RongkePower

SAFT

Tesla

TRL10:Earlyadoptioninmarket(largeproductvolumesmanufactured,deliveredanddemonstratedinfieldi.e.100MWh-1GWh,revenuelikely$10M-$50MUSD)

CellCube

EOSEnergyEnterprises

FZSoNick(acquiredbyHitachiChemical-$5.8BUSDrevenuein2021)

TRL9:Commercialoperation(significantproductvolumesmanufactured,deliveredanddemonstratedinfieldi.e.10MWh-100MWh,revenuelikely$1M-$10MUSD)

InvintyEnergySystems

VRBEnergy

TRL8:Commercialdemonstration(smallproductvolumesunderdemonstrationwithsignificantgrowthinmanufacturingi.e.1MWh-10MWh,revenuelikely$100K-$1MUSD)

Ambri

EnerVenue(globallybrandedasSLB-$28.1BUSDrevenuein2022)

ESS

Redflow

TRL7:Pre-commercialdemonstration(onlysmallproductvolumesmanufactured,deliveredanddemonstratedinfield,minimalorpre-revenue)

Gelion

PolyJoule

Zinc8

SometakeawaysfromthisTRLmappinginclude:

Oldertechnologies,withfewerrecentdevelopments,suchaslithiumion,vanadiumflowandmoltensodiumbatteriesarehigheruptheTRLscale.

Ofthenewertechnologies,EOSEnergyEnterprises(non-flowzinc-bromide)appearstohaveasignificantcommercialadvantageoveritscompetitors,generatingover

$10MUSDinrevenuein2022withatleasta1.8GWhprojectpipeline.

CompanieslowerontheTRLscale(TRL7-8)willhaveasignificantnumberofcommercialisationbarriers(forexample,manufacturingandsupplychain)tocrossbeforegainingearlyadoptioninthemarket.Thiswillbesignificantlymore

challengingforindependentcompanieswhencomparedto,forexample,EnerVenue(nickel-hydrogen),whohavebackingfromglobal,multibilliondollarengineeringcompany,Schlumberger(nowmarketedasSLB).

11

Table1:Commercialmetricsofbatterymanufacturers

Chemistry

Manufacturer

Founded

Dispatchedvolume

Employees

Revenue*

Productionvolume

Pipelinevolume

Year

MWh

#

$MUSD/year

MWh/year

MWh

14,36440

(Additional140,000peryearunderconstruction)

-

61

(2020)41

>1,000

-

780

(58MforBESS)42

170,000

(Totalplannedproduction

-

81,462

40,000(Megapackonly)

-

Approx.

CATL

2011

-

33,000

CorvusEnergy

2009

400

192

SAFT

1918

-

>4,000

Tesla

2003

>17,000

128,000

170,000

Lithiumion

by2025)

(10,000non-automotive)43

CellCube

2008

42.9

61

4.09(2019)44

-

-

InvintyEnergySystems

2020

28.0

171

3.245

-

66.3

Vanadium RongkePower

2008

992

-

-

300

-

VRBEnergy

2007

>30

65

-

-

>500

EOSEnergyStorage

2008

640

250

18.4

800

>1,800

Gelion

2015

Pilotscale#

50

0.4346

2

-

Zinc-based Redflow

2005

>2

62

1.1247

80

-

by2024)48

by2024)

FZSoNick49

2011

400

130

32.2(2019)50

100

-

NGKInsulators51

1919

4,100

20,100

4041

1,000

-

Zinc8 2011 Pilotscale 44 0(Goaltogenerate

1(Ambitionof60MWh -

Sodium-based

Ironflow ESS 2011 - 183 0.8752 750 >12,00053

endof2023)

Calcium-Antimony Ambri 2010 Commercialpilot# 122 - 200(200,000cellsby

2024;31,000by2027)

Nickel-Hydrogen EnerVenue(SLB) 2020 Commercialpilot 110 - 60(2,200plannedby

>1,20054

>5,00055

Organic PolyJoule 2011 Pilotscale 11 - >1(10000cells) <1

* RevenuedatahasbeengainedfromGoogleFinanceQ32021toQ32022,unlessspecifiedotherwise.Unknowndatanotavailableinthepublicdomainhasbeenindicatedwithadash.

# Pilotscalereferstoinstallationslessthan1MWh.Commercialpilotreferstoinstallationsbetween1–2MWh. 12

Analysis

Thedatapresentedinthissectioniseitherpubliclyavailableorhasbeengainedthroughdirectconsultationwiththemanufacturer.Forthosetechnologieswithmultipleplayers(i.e.lithiumionandvanadiumflow),batterydatahasbeenaggregatedandaveragevaluesarepresented.Theraw,non-aggregateddataisprovidedintablesintheAppendix.

Technicalcomparison

Effectiveenergydensity

Theenergydensityofbatteriesistypicallypresentedinwatt-hourspergram(Wh/gorkWh/kg).Thisprovidesareasonablecomparisonwhentheuseableenergyoutputandweightofthebatteryisknown,however,inthecaseofcontainerisedenergystoragesystems,thereissignificantvoidagewithinthecontainerforthepurposeofmaintenance,airflowetc.Thismeansthatonlyaneffectiveenergydensitycanbedeterminedusingtheuseableenergyoutputandtheweightofthecontainerisedsystem.

Thisapproachisalsochallengingassomemanufacturersdonotprovidetheweightofthecontainerisedsystem,however,allprovidetheareafootprintofthesystemforagivenenergyoutput,enablinganeffectiveenergydensityofkWh/m2tobepresentedinFigure2.Notethatanadvantageofcontainerisedsystemsisthattheymaybestacked,however,forthepurposeofthiscomparison,thefootprintdensityhasonlybeenpresentedforasystemwithasinglecontainer.

Lithiumionhasthehighestaverageenergydensityofthetechnologiescomparedatapproximately145kWh/m2.Thisobservationisnotsurprisingaslithiumionisknownforhavingaparticularlyhighenergydensitywhencomparedtootherrenewablebatterytechnologies.56Thisisthenfollowedbymolten-saltbatteries(calcium-antimony,sodium-nickel-chloride,sodium-sulphur),whicharealsoknownforhighenergydensities,57atapproximately80kWh/m2.Zinc-brominetechnology,inbothflowandnon-flowbatteryconfigurations,hasaneffectiveenergydensityof30kWh/m2.Thisdensityissimilartonickel-hydrogen(25kWh/m2),butmuchhigherthanotherflowchemistries(Vanadium,10kWh/m2;Iron,15kWh/m2).Duetoitsearlystageofdevelopment,theconductivepolymerbatteryhasalowenergydensityof15kWh/m2,similartoverylargeredoxflowsystems.

Figure2:Effectiveenergydensityofbatterytechnologies

150

Effectiveenergydensity(kWh/m2)

100

50

0

13

Batterycycling

Thelifetimeofabatteryismeasuredbythetotalnumberofcharge/dischargecyclesabatterycanachievebefore:

Thebatterycannolongerholdacharge;or

Significantenergycapacitydegradationhasoccurred.

Ofthebatterytechnologiesinvestigated(seeFigure3),nickel-hydrogeniscapableofachievingatleast30,000cyclesinitslifetime.Thisisfollowedbyvanadiumandironredoxflowbatterieswithlifetimesofapproximately20,000cycles.Allother

technologieshaveatheoreticallifetimelessthan12,000cycles,withthemajoritylessthan7,000cycles.

Forthisresearch,itisofparticularinteresttounderstandwhichbatterytechnologyissuitableformultiplecyclesonagivenday.Somebatterymanufacturersstatethattheirtechnologyiscapableofanunlimitednumberofdailycyclesdespitestatingaverylonglifetimeinyears(whichdoesnotalignwiththetheoreticalcyclelifetime).Asaresult,somebatterytechnologiescapableofmultiplecyclingperdayareonlyabletodosobysignificantlydecreasingtheyearsofuseablebatterylife.

Toconductafaircomparison,theannualcyclesofagiventechnologyhasbeendeterminedbydividingthetheoreticalcyclelifeofthebatterybythedesignlifeti

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论