版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省泰州市泰兴市长生中学2024届数学八上期末监测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如果两个三角形中两条边和其中一边上的高对应相等,那么这两个三角形的第三条边所对的角的关系是()A.相等 B.不相等 C.互余或相等 D.互补或相等2.下列长度的三条线段能组成三角形的是A.2,3,5 B.7,4,2C.3,4,8 D.3,3,43.证明:平行四边形对角线互相平分.已知:四边形ABCD是平行四边形,如图所示.求证:,以下是排乱的证明过程,正确的顺序应是①,.②四边形ABCD是平行四边形.③,.④.⑤,()A.②①③④⑤ B.②③⑤①④ C.②③①④⑤ D.③②①④⑤4.如图,在等腰△ABC中,顶角∠A=40°,AB的垂直平分线MN交AC于点D,若AB=m,BC=n,则△DBC的周长是()A.m+2n B.2m+n C.2m+2n D.m+n5.不等式组的解集是x>1,则m的取值范围是()A.m≥1 B.m≤1 C.m≥0 D.m≤06.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()A.(a+b)2=a2+2ab+b2B.(a-b)2=a2-2ab+b2C.a2-b2=(a+b)(a-b)D.(a+2b)(a-b)=a2+ab-2b27.某单位向一所希望小学赠送1080件文具,现用A、B两种不同的包装箱进行包装,已知每个B型包装箱比A型包装箱多装15件文具,单独使用B型包装箱比单独使用A型包装箱可少用12个.设B型包装箱每个可以装x件文具,根据题意列方程为A. B.C. D.8.如图,已知∠MON=40°,P为∠MON内一定点,OM上有一点A,ON上有一点B,当△PAB的周长取最小值时,∠APB的度数是()A.40° B.100° C.140° D.50°9.下列图形中,不一定是轴对称图形的是()A.正方形 B.等腰三角形 C.直角三角形 D.圆10.图1中,每个小正方形的边长为1,的三边a,b,c的大小关系是()A.a<c<b B.a<b<c C.c<a<b D.c<b<a二、填空题(每小题3分,共24分)11.已知点与点关于轴对称,则_______.12.小亮用天平称得一个罐头的质量为2.026kg,近似数2.026精确到0.1是_____.13.如图,已知△ABC的周长是20,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于点D,且OD=2,△ABC的面积是_____.14.中,,,斜边,则AC的长为__________.15.如图,上海实行垃圾分类政策后,各街道、各小区都在积极改造垃圾房,在工地一边的靠墙处,用12米长的栏围一个占面积为20平方米的长方形临时垃圾堆放点,栅栏只围三边,并且开一个2米的小门,方便垃圾桶的搬运.设垂直于墙的一边长为米.根据题意,建立关于的方程是____.16.如图,中,,若沿图中虚线截去,则______.17.如图所示,已知△ABC和△BDE均为等边三角形,且A、B、E三点共线,连接AD、CE,若∠BAD=39°,那么∠AEC=度.18.分解因式:ab2﹣4ab+4a=.三、解答题(共66分)19.(10分)阅读下面材料,完成(1)-(3)题:数学课上,老师出示了这样一道题:如图1,点是正边上一点以为边做正,连接.探究线段与的数量关系,并证明.同学们经过思考后,交流了自已的想法:小明:“通过观察和度量,发现与相等.”小伟:“通过全等三角形证明,再经过进一步推理,可以得到线段平分.”......老师:“保留原题条件,连接,是的延长线上一点,(如图2),如果,可以求出、、三条线段之间的数量关系.”(1)求证;(2)求证线段平分;(3)探究、、三条线段之间的数量关系,并加以证明.20.(6分)如图,在平面直角坐标系中,点的坐标为(-3,1).(1)请在图中作出与关于轴对称的;(2)写出点,,的坐标;(3)求出的面积.21.(6分)探索与证明:(1)如图①,直线经过正三角形的顶点,在直线上取点,,使得,.通过观察或测量,猜想线段,与之间满足的数量关系,并予以证明;(2)将(1)中的直线绕着点逆时针方向旋转一个角度到如图②的位置,,.通过观察或测量,猜想线段,与之间满足的数量关系,并予以证明.22.(8分)勾股定理是初中数学学习的重要定理之一,这个定理的验证方法有很多,你能验证它吗?请你根据所给图形选择一种方法,画出验证勾股定理的方法,并写出验证过程.23.(8分)如图1,点为正方形的边上一点,,且,连接,过点作垂直于的延长线于点.(1)求的度数;(2)如图2,连接交于,交于,试证明:.24.(8分)在平面直角坐标系中,一条直线经过、、三点.(1)求的值;(2)设这条直线与轴交于点,求的面积.25.(10分)化简并求值:,其中,且均不为1.26.(10分)某学校为了调查学生对课改实验的满意度,随机抽取了部分学生作问卷调查:用“A”表示“很满意“,“B”表示“满意”,“C”表示“比较满意”,“D”表示“不满意”.工作人员根据问卷调查数据绘制了两幅不完整的统计图,请你根据统计图提供的信息解答以下问题:(1)本次问卷调查,共调查了多少名学生?(2)将条形统计图中的B等级补完整;(3)求出扇形统计图中,D等级所对应扇形的圆心角度数.
参考答案一、选择题(每小题3分,共30分)1、D【分析】作出图形,然后利用“HL”证明Rt△ABG和Rt△DEH全等,根据全等三角形对应角相等可得∠B=∠DEH,再分∠E是锐角和钝角两种情况讨论求解.【详解】如图,△ABC和△DEF中,AB=DE,BC=EF,AG、DH分别是△ABC和△DEF的高,且AG=DH,在Rt△ABG和Rt△DEH中,,∴Rt△ABG≌Rt△DEH(HL),∴∠B=∠DEH,∴若∠E是锐角,则∠B=∠DEF,若∠E是钝角,则∠B+∠DEF=∠DEH+∠DEF=180°,故这两个三角形的第三边所对的角的关系是:互补或相等.故选D.2、D【解析】试题解析:A.∵3+2=5,∴2,3,5不能组成三角形,故A错误;B.∵4+2<7,∴7,4,2不能组成三角形,故B错误;C.∵4+3<8,∴3,4,8不能组成三角形,故C错误;D.∵3+3>4,∴3,3,4能组成三角形,故D正确;故选D.3、C【解析】利用平行四边形的性质证三角形全等,进而得出对应边相等,由此即可明确证明顺序.【详解】解:四边形ABCD是平行四边形,,,所以正确的顺序应为②③①④⑤故答案为:C【点睛】本题考查了平行四边形对角线互相平分的证明,明确证明思路是解题的关键.4、D【分析】根据垂直平分线的性质和等腰三角形的定义,可得AD=BD,AC=AB=m,进而即可求解.【详解】∵AB的垂直平分线MN交AC于点D,顶角∠A=40°,∴AD=BD,AC=AB=m,∴△DBC的周长=DB+BC+CD=BC+AD+DC=AC+BC=m+n.故选:D.【点睛】本题主要考查等腰三角形的定义以及垂直平分线的性质定理,掌握线段的垂直平分线上的点到线段的两个端点距离相等,是解题的关键.5、D【分析】表示出不等式组中两不等式的解集,根据已知不等式组的解集确定出m的范围即可.【详解】解:不等式整理得:,由不等式组的解集为x>1,得到m+1≤1,解得:m≤0.故选D.【点睛】本题考查了不等式组的解集的确定.6、C【分析】分别表示出甲乙图形中阴影部分的面积,根据面积相等可得结论.【详解】解:甲图中阴影部分的面积为大正方形的面积减去小正方形的面积,即,乙图中阴影部分长方形的长为,宽为,阴影部分的面积为,根据两个图形中阴影部分的面积相等可得.故选:C.【点睛】本题考查了平方差公式的验证,灵活表示图形的面积是解题的关键.7、A【分析】关键描述语:单独使用B型包装箱比单独使用A型包装箱可少用12个;可列等量关系为:所用B型包装箱的数量=所用A型包装箱的数量-12,由此可得到所求的方程.【详解】解:根据题意,得:故选:A.【点睛】此题考查分式方程的问题,关键是根据公式:包装箱的个数与文具的总个数÷每个包装箱装的文具个数是等量关系解答.8、B【分析】设点P关于OM、ON的对称点,当点A、B在上时,△PAB的周长为PA+AB+PB=,此时周长最小,根据轴对称的性质,可求出∠APB的度数.【详解】分别作点P关于OM、ON的对称点,连接,交OM、ON于点A、B,连接PA、PB,此时△PAB的周长取最小值等于.由轴对称性质可得,,,,∴,∴,又∵,,∴.故选B.【点睛】本题考查了轴对称-最短路线问题,根据两点之间线段最短的知识画出图形是解题的关键.9、C【解析】正方形、等腰三角形、圆一定是轴对称图形,等腰直角三角形是轴对称图形,故选C10、C【解析】通过小正方形网格,可以看出AB=4,AC、BC分别与三角形外构成直角三角形,再利用勾股定理可分别求出AC、BC,然后比较三边的大小即可.解答:解:∵AC==5=,BC=AB=4=,∴b>a>c,即c<a<b.故选C.二、填空题(每小题3分,共24分)11、【分析】平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(−x,y),即关于纵轴的对称点,纵坐标不变,横坐标变成相反数可得出a、b的值,即可得出答案.【详解】解:∵点与点关于轴对称,∴,,解得:,,∴,故答案为:.【点睛】本题主要考查了平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系,难度适中.12、2.0【解析】2.026kg,精确到0.1即对小数点后的0后边的数进行四舍五入,为2.0,故答案为2.0.13、1.【分析】根据角平分线上的点到角的两边的距离相等可得点O到AB、AC、BC的距离都相等(即OE=OD=OF),从而可得到的面积等于周长的一半乘以2,代入求出即可.【详解】如下图,连接OA,过O作OE⊥AB于E,OF⊥AC于F,∵OB、OC分别平分∠ABC和∠ACB,∴OE=OF=OD=2,∵的周长是1,OD⊥BC于D,且OD=2,∴=1,故答案为:1【点睛】本题主要考查了角平分线的性质及三角形面积的求法,熟练掌握角平分线的性质是解决本题的关键.14、1【分析】根据题意,画出图形,然后根据10°所对的直角边是斜边的一半即可求出结论.【详解】解:如图所示:中,,,斜边,∴AC=故答案为:1.【点睛】此题考查的是直角三角形的性质,掌握10°所对的直角边是斜边的一半是解决此题的关键.15、【分析】设垃圾房的宽为x米,由栅栏的长度结合图形,可求出垃圾房的长为(14-2x)米,再根据矩形的面积公式即可列出关于x的一元二次方程,此题得解.【详解】设垃圾房的宽为x米,则垃圾房的长为(14-2x)米,根据题意得:x(14-2x)=1.故答案为:x(14-2x)=1.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.16、255°【分析】先根据三角形内角和求出的度数,再利用四边形的内角和求出的度数即可.【详解】∵故答案为:.【点睛】本题主要考查三角形内角和定理和四边形内角和,掌握三角形内角和定理和四边形内角和是解题的关键.17、21【分析】根据△ABC和△BDE均为等边三角形,可得∠ABC=∠DBE=60°,AB=BC,BE=BD,由此证明∠CBD=60°,继而得到∠ABD=∠CBE=120°,即可证明△ABD≌△CBE,所以∠ADB=∠AEC,利用三角形内角和代入数值计算即可得到答案.【详解】解:∵△ABC和△BDE均为等边三角形,
∴∠ABC=∠DBE=60°,AB=BC,BE=BD,
∴∠CBD=60°,
∴∠ABD=∠CBE=120°,
在△ABD和△CBE中,∴△ABD≌△CBE,(SAS)
∴∠AEC=∠ADB,
∵∠ADB=180°-∠ABD-∠BAD=21°,
∴∠AEC=21°.【点睛】此题主要考查了三边及其夹角对应相等的两个三角形全等的判定方法以及全等三角形的对应角相等的性质,熟记特殊三角形的性质以及证明△ABD≌△CBE是解题的关键.18、a(b﹣1)1.【解析】ab1﹣4ab+4a=a(b1﹣4b+4)﹣﹣(提取公因式)=a(b﹣1)1.﹣﹣(完全平方公式)故答案为a(b﹣1)1.三、解答题(共66分)19、(1)见解析;(2)见解析;(3),理由见解析【分析】(1)根据等边三角形的性质得出,再根据即可得证;(2)证明,得到(3)在上截取,可证,,,再证,,【详解】证明:(1)∵在正和正中,∴∴∴.(2)∵,,∴.∴平分.(3)在上截取.∵,∴.∵,∴.∴.∵,,,∴.∴,,.∴.∴.∴.∵,,,∴.∴.∵,∴.∴.【点睛】本题考查了等边三角形的性质、全等三角形的判定及性质定理,该题综合性较强,灵活运用性质定理是解题的关键.20、(1)答案见解析;(2),,;(3)9.5【分析】(1)依据轴对称的性质,即可得到的三个顶点,进而得出.(2)根据图像直接找出坐标即可.(3)依据割补法即可得到△ABC的面积.【详解】(1)如图所示:(2)点的坐标为,点的坐标为,点的坐标为.(3)△ABC的面积【点睛】本题考查作图-轴对称变换,解题关键是根据题意作出.21、(1)DE=BD+CE,证明见解析;(2)CE=BD+DE,证明见解析【分析】(1)根据等边三角形的性质可得AB=CA,∠BAC=60°,然后根据已知条件可得,并且可证出∠ABD=∠CAE,利用AAS即可证出△ABD≌△CAE,从而得出BD=AE,AD=CE,然后根据DE=AE+AD和等量代换即可得出结论;(2)根据等边三角形的性质可得AB=CA,∠BAC=60°,然后根据已知条件可得,并且可证出∠ABD=∠CAE,利用AAS即可证出△ABD≌△CAE,从而得出BD=AE,AD=CE,然后根据AD=AE+DE和等量代换即可得出结论;【详解】解:(1)DE=BD+CE,证明如下∵△ABC为等边三角形∴AB=CA,∠BAC=60°∵,∴∴∠ABD+∠BAD=180°-∠ADB=120°∠CAE+∠BAD=180°-∠BAC=120°∴∠ABD=∠CAE在△ABD和△CAE中∴△ABD≌△CAE∴BD=AE,AD=CE∴DE=AE+AD=BD+CE;(2)CE=BD+DE,证明如下∵△ABC为等边三角形∴AB=CA,∠BAC=60°∵,∴∴∠ABD+∠BAD=180°-∠ADB=60°∠CAE+∠BAD=∠BAC=60°∴∠ABD=∠CAE在△ABD和△CAE中∴△ABD≌△CAE∴BD=AE,AD=CE∵AD=AE+DE∴CE=BD+DE.【点睛】此题考查的是等边三角形的性质和全等三角形的判定及性质,掌握等边三角形的性质、利用AAS判定两个三角形全等和全等三角形的对应边相等是解决此题的关键.22、见解析【分析】根据勾股定理的定义及几何图形的面积法进行证明即可得解.【详解】如下图,根据几何图形的面积可知:整理得:.【点睛】本题主要考查了勾股定理的推到,熟练掌握面积法推到勾股定理是解决本题的关键.23、(1)∠EAF=135°;(2)证明见解析.【分析】(1)根据正方形的性质,找到证明三角形全等的条件,只要证明△EBC≌△FNE(AAS)即可解决问题;(2)过点F作FG∥AB交BD于点G.首先证明四边形ABGF为平行四边形,再证明△FGM≌△DMC(AAS)即可解决问题;【详解】(1)解:∵四边形是正方形,∴,∴,,∴,∵,∴≌∴,,∵∴∴∴,∴,∵,∴,∴(2)证明:过点作交于点.由(1)可知,∵∴,∴,∵,∴四边形为平行四边形,∴,,∵,∴,∵,∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度数据中心服务器租赁合同
- 2024医院病房清洁服务合同
- 2024年展览保险服务协议
- 2024年度0kv线路工程建设的合作开发合同
- 2024年度婚礼主持委托合同
- 2024年定制版太阳能系统维护合同
- 2024年度太阳能热水系统安装合同
- 2024年度城市供水供电供气合同
- 2024年三人股东责任承担协议
- 04版建筑工程合同
- 软件平台施工组织方案
- 经济师中级考试《经济基础知识》历年真题卷及答案解析
- 2024 smart汽车品牌用户社区运营全案
- 期中 (试题) -2024-2025学年人教精通版英语六年级上册
- 期刊编辑的学术期刊论文写作指导考核试卷
- 教科版小学科学五年级上册教案(全册)
- 户外广告牌施工方案
- 泵站运行管理手册
- 九年级化学上册(沪教版2024)新教材解读课件
- JGT503-2016承插型盘扣式钢管支架构件
- SH∕T 3097-2017 石油化工静电接地设计规范
评论
0/150
提交评论