版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省鹤壁市淇滨区鹤壁高中2024届高三下学期线上周数学试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合,,则集合的真子集的个数是()A.8 B.7 C.4 D.32.设是虚数单位,,,则()A. B. C.1 D.23.已知集合,则等于()A. B. C. D.4.“哥德巴赫猜想”是近代三大数学难题之一,其内容是:一个大于2的偶数都可以写成两个质数(素数)之和,也就是我们所谓的“1+1”问题.它是1742年由数学家哥德巴赫提出的,我国数学家潘承洞、王元、陈景润等在哥德巴赫猜想的证明中做出相当好的成绩.若将6拆成两个正整数的和,则拆成的和式中,加数全部为质数的概率为()A. B. C. D.5.已知为圆:上任意一点,,若线段的垂直平分线交直线于点,则点的轨迹方程为()A. B.C.() D.()6.在三棱锥中,,,则三棱锥外接球的表面积是()A. B. C. D.7.一个组合体的三视图如图所示(图中网格小正方形的边长为1),则该几何体的体积是()A. B. C. D.8.《九章算术》勾股章有一“引葭赴岸”问题“今有饼池径丈,葭生其中,出水两尺,引葭赴岸,适与岸齐,问水深,葭各几何?”,其意思是:有一个直径为一丈的圆柱形水池,池中心生有一颗类似芦苇的植物,露出水面两尺,若把它引向岸边,正好与岸边齐,问水有多深,该植物有多高?其中一丈等于十尺,如图若从该葭上随机取一点,则该点取自水下的概率为()A. B. C. D.9.已知双曲线(,),以点()为圆心,为半径作圆,圆与双曲线的一条渐近线交于,两点,若,则的离心率为()A. B. C. D.10.已知复数,,则()A. B. C. D.11.若集合,则=()A. B. C. D.12.如图所示,网格纸上小正方形的边长为,粗线画出的是某多面体的三视图,则该几何体的各个面中最大面的面积为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,,,则的最小值是__.14.某校高三年级共有名学生参加了数学测验(满分分),已知这名学生的数学成绩均不低于分,将这名学生的数学成绩分组如下:,,,,,,得到的频率分布直方图如图所示,则下列说法中正确的是________(填序号).①;②这名学生中数学成绩在分以下的人数为;③这名学生数学成绩的中位数约为;④这名学生数学成绩的平均数为.15.函数的最大值与最小正周期相同,则在上的单调递增区间为______.16.若变量,满足约束条件则的最大值为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数其中(Ⅰ)若曲线在点处切线的倾斜角为,求的值;(Ⅱ)已知导函数在区间上存在零点,证明:当时,.18.(12分)在直角坐标系xOy中,直线的参数方程为(t为参数).以原点O为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为.(1)写出圆C的直角坐标方程;(2)设直线l与圆C交于A,B两点,,求的值.19.(12分)如图,在四棱锥中,侧面为等边三角形,且垂直于底面,,分别是的中点.(1)证明:平面平面;(2)已知点在棱上且,求直线与平面所成角的余弦值.20.(12分)在△ABC中,分别为三个内角A、B、C的对边,且(1)求角A;(2)若且求△ABC的面积.21.(12分)如图,四棱锥中,底面是边长为的菱形,,点分别是的中点.(1)求证:平面;(2)若,求直线与平面所成角的正弦值.22.(10分)过点作倾斜角为的直线与曲线(为参数)相交于M、N两点.(1)写出曲线C的一般方程;(2)求的最小值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
转化条件得,利用元素个数为n的集合真子集个数为个即可得解.【题目详解】由题意得,,集合的真子集的个数为个.故选:D.【题目点拨】本题考查了集合的化简和运算,考查了集合真子集个数问题,属于基础题.2、C【解题分析】
由,可得,通过等号左右实部和虚部分别相等即可求出的值.【题目详解】解:,,解得:.故选:C.【题目点拨】本题考查了复数的运算,考查了复数相等的涵义.对于复数的运算类问题,易错点是把当成进行运算.3、C【解题分析】
先化简集合A,再与集合B求交集.【题目详解】因为,,所以.故选:C【题目点拨】本题主要考查集合的基本运算以及分式不等式的解法,属于基础题.4、A【解题分析】
列出所有可以表示成和为6的正整数式子,找到加数全部为质数的只有,利用古典概型求解即可.【题目详解】6拆成两个正整数的和含有的基本事件有:(1,5),(2,4),(3,3),(4,2),(5,1),而加数全为质数的有(3,3),根据古典概型知,所求概率为.故选:A.【题目点拨】本题主要考查了古典概型,基本事件,属于容易题.5、B【解题分析】
如图所示:连接,根据垂直平分线知,,故轨迹为双曲线,计算得到答案.【题目详解】如图所示:连接,根据垂直平分线知,故,故轨迹为双曲线,,,,故,故轨迹方程为.故选:.【题目点拨】本题考查了轨迹方程,确定轨迹方程为双曲线是解题的关键.6、B【解题分析】
取的中点,连接、,推导出,设设球心为,和的中心分别为、,可得出平面,平面,利用勾股定理计算出球的半径,再利用球体的表面积公式可得出结果.【题目详解】取的中点,连接、,由和都是正三角形,得,,则,则,由勾股定理的逆定理,得.设球心为,和的中心分别为、.由球的性质可知:平面,平面,又,由勾股定理得.所以外接球半径为.所以外接球的表面积为.故选:B.【题目点拨】本题考查三棱锥外接球表面积的计算,解题时要分析几何体的结构,找出球心的位置,并以此计算出球的半径长,考查推理能力与计算能力,属于中等题.7、C【解题分析】
根据组合几何体的三视图还原出几何体,几何体是圆柱中挖去一个三棱柱,从而解得几何体的体积.【题目详解】由几何体的三视图可得,几何体的结构是在一个底面半径为1的圆、高为2的圆柱中挖去一个底面腰长为的等腰直角三角形、高为2的棱柱,故此几何体的体积为圆柱的体积减去三棱柱的体积,即,故选C.【题目点拨】本题考查了几何体的三视图问题、组合几何体的体积问题,解题的关键是要能由三视图还原出组合几何体,然后根据几何体的结构求出其体积.8、C【解题分析】
由题意知:,,设,则,在中,列勾股方程可解得,然后由得出答案.【题目详解】解:由题意知:,,设,则在中,列勾股方程得:,解得所以从该葭上随机取一点,则该点取自水下的概率为故选C.【题目点拨】本题考查了几何概型中的长度型,属于基础题.9、A【解题分析】
求出双曲线的一条渐近线方程,利用圆与双曲线的一条渐近线交于两点,且,则可根据圆心到渐近线距离为列出方程,求解离心率.【题目详解】不妨设双曲线的一条渐近线与圆交于,因为,所以圆心到的距离为:,即,因为,所以解得.故选A.【题目点拨】本题考查双曲线的简单性质的应用,考查了转化思想以及计算能力,属于中档题.对于离心率求解问题,关键是建立关于的齐次方程,主要有两个思考方向,一方面,可以从几何的角度,结合曲线的几何性质以及题目中的几何关系建立方程;另一方面,可以从代数的角度,结合曲线方程的性质以及题目中的代数的关系建立方程.10、B【解题分析】分析:利用的恒等式,将分子、分母同时乘以,化简整理得详解:,故选B点睛:复数问题是高考数学中的常考问题,属于得分题,主要考查的方面有:复数的分类、复数的几何意义、复数的模、共轭复数以及复数的乘除运算,在运算时注意符号的正、负问题.11、C【解题分析】
求出集合,然后与集合取交集即可.【题目详解】由题意,,,则,故答案为C.【题目点拨】本题考查了分式不等式的解法,考查了集合的交集,考查了计算能力,属于基础题.12、B【解题分析】
根据三视图可以得到原几何体为三棱锥,且是有三条棱互相垂直的三棱锥,根据几何体的各面面积可得最大面的面积.【题目详解】解:分析题意可知,如下图所示,该几何体为一个正方体中的三棱锥,最大面的表面边长为的等边三角形,故其面积为,故选B.【题目点拨】本题考查了几何体的三视图问题,解题的关键是要能由三视图解析出原几何体,从而解决问题.二、填空题:本题共4小题,每小题5分,共20分。13、.【解题分析】
因为,展开后利用基本不等式,即可得到本题答案.【题目详解】由,得,所以,当且仅当,取等号.故答案为:【题目点拨】本题主要考查利用基本不等式求最值,考查学生的转化能力和运算求解能力.14、②③【解题分析】
由频率分布直方图可知,解得,故①不正确;这名学生中数学成绩在分以下的人数为,故②正确;设这名学生数学成绩的中位数为,则,解得,故③正确;④这名学生数学成绩的平均数为,故④不正确.综上,说法正确的序号是②③.15、【解题分析】
利用三角函数的辅助角公式进行化简,求出函数的解析式,结合三角函数的单调性进行求解即可.【题目详解】∵,则函数的最大值为2,周期,的最大值与最小正周期相同,,得,则,当时,,则当时,得,即函数在,上的单调递增区间为,故答案为:.【题目点拨】本题考查三角函数的性质、单调区间,利用辅助角公式求出函数的解析式是解决本题的关键,同时要注意单调区间为定义域的一个子区间.16、7【解题分析】
画出不等式组表示的平面区域,数形结合,即可容易求得目标函数的最大值.【题目详解】作出不等式组所表示的平面区域,如下图阴影部分所示.观察可知,当直线过点时,有最大值,.故答案为:.【题目点拨】本题考查二次不等式组与平面区域、线性规划,主要考查推理论证能力以及数形结合思想,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ)证明见解析【解题分析】
(Ⅰ)求导得到,,解得答案.(Ⅱ),故,在上单调递减,在上单调递增,,设,证明函数单调递减,故,得到证明.【题目详解】(Ⅰ),故,,故.(Ⅱ),即,存在唯一零点,设零点为,故,即,在上单调递减,在上单调递增,故,设,则,设,则,单调递减,,故恒成立,故单调递减.,故当时,.【题目点拨】本题考查了函数的切线问题,利用导数证明不等式,转化为函数的最值是解题的关键.18、(1);(2)20【解题分析】
(1)利用即可得到答案;(2)利用直线参数方程的几何意义,.【题目详解】解:(1)由,得圆C的直角坐标方程为,即.(2)将直线l的参数方程代入圆C的直角坐标方程,得,即,设两交点A,B所对应的参数分别为,,从而,则.【题目点拨】本题考查了极坐标方程与普通方程的互化、直线参数方程的几何意义等知识,考查学生的计算能力,是一道容易题.19、(1)证明见解析;(2).【解题分析】
(1)由平面几何知识可得出四边形是平行四边形,可得面,再由面面平行的判定可证得面面平行;(2)由(1)可知,两两垂直,故建立空间直角坐标系,可求得面PAB的法向量,再运用线面角的向量求法,可求得直线与平面所成角的余弦值.【题目详解】(1),,又,,,而、分别是、的中点,,故面,又且,故四边形是平行四边形,面,又,是面内的两条相交直线,故面面.(2)由(1)可知,两两垂直,故建系如图所示,则,,,,设是平面PAB的法向量,,令,则,,直线NE与平面所成角的余弦值为.【题目点拨】本题考查空间的面面平行的判定,以及线面角的空间向量的求解方法,属于中档题.20、(1);(2).【解题分析】
(1)整理得:,再由余弦定理可得,问题得解.(2)由正弦定理得:,,,再代入即可得解.【题目详解】(1)由题意,得,∴;(2)由正弦定理,得,,∴.【题目点拨】本题主要考查了正、余弦定理及三角形面积公式,考查了转化思想及化简能力,属于基础题.21、(1)见解析;(2).【解题分析】
(1)取的中点,连接,通过证明,即可证得;(2)建立空间直角坐标系,利用向量的坐标表示即可得解.【题目详解】(1)证明:取的中点,连接.是的中点,,又,四边形是平行四边形.,又平面平面,平面.(2),,同理可得:,又平面.连接,设,则,建立空间直角坐标系.设平面的法向量为,则,则,取.直线与平面所成角的正弦值为.【题目点拨】此题考查证明线面平行,求线面角的大小,关键在于熟练掌握线面平行的证明方法,法向量法求线面角的基本方法,根据公式准确
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 麋鹿课件完美教学课件
- 消防应急体系
- 3.1.1 铁及其性质 课件高一上学期化学(人教版2019必修第一册)
- 外汇期货课件教学课件
- 池塘边的小鸭教案反思
- 过生日说课稿
- 2025商场地产蛇年新春国潮年货节(蛇年行大集主题)活动策划方案-47P
- 智慧人工智能:开拓人工智能创新应用的方案
- 新能源汽车二手房交易合同模板
- 眼镜制造合作合同
- 中医疫病防治
- 2024九年级英语下册 Unit 7 Work for PeaceLesson 39 Having Good Relationships in Your Community教学设计(新版)冀教版
- 更好发挥政府作用说课高中政治统编版必修二经济与社会
- 《深海》中的色彩叙事与镜像阐释
- 2023年中考英语备考让步状语从句练习题(附答案)
- ISO9001:2015内部质量审核控制程序
- 柔性生产线设计
- 《义务教育数学课程标准(2022年版)》测试题+答案
- 物业项目交接计划方案
- 2024年河北省职业院校技能大赛装配式建筑构件安装(中职组)理论考试题库(含答案)
- T-HNKCSJ 002-2023 河南省地源热泵系统工程技术规范
评论
0/150
提交评论