版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届重庆市聚奎中学高三4月普通高中毕业班高考适应性考试数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.正的边长为2,将它沿边上的高翻折,使点与点间的距离为,此时四面体的外接球表面积为()A. B. C. D.2.已知双曲线的一条渐近线经过圆的圆心,则双曲线的离心率为()A. B. C. D.23.某部队在一次军演中要先后执行六项不同的任务,要求是:任务A必须排在前三项执行,且执行任务A之后需立即执行任务E,任务B、任务C不能相邻,则不同的执行方案共有()A.36种 B.44种 C.48种 D.54种4.若实数满足不等式组则的最小值等于()A. B. C. D.5.若集合M={1,3},N={1,3,5},则满足M∪X=N的集合X的个数为()A.1 B.2C.3 D.46.已知a>0,b>0,a+b=1,若α=,则的最小值是()A.3 B.4 C.5 D.67.2019年10月17日是我国第6个“扶贫日”,某医院开展扶贫日“送医下乡”医疗义诊活动,现有五名医生被分配到四所不同的乡镇医院中,医生甲被指定分配到医院,医生乙只能分配到医院或医院,医生丙不能分配到医生甲、乙所在的医院,其他两名医生分配到哪所医院都可以,若每所医院至少分配一名医生,则不同的分配方案共有()A.18种 B.20种 C.22种 D.24种8.设,,,则()A. B. C. D.9.在条件下,目标函数的最大值为40,则的最小值是()A. B. C. D.210.设集合,,则()A. B.C. D.11.对于定义在上的函数,若下列说法中有且仅有一个是错误的,则错误的一个是()A.在上是减函数 B.在上是增函数C.不是函数的最小值 D.对于,都有12.已知双曲线的右焦点为,过原点的直线与双曲线的左、右两支分别交于两点,延长交右支于点,若,则双曲线的离心率是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知数列的前项和为,,且满足,则数列的前10项的和为______.14.边长为2的正方形经裁剪后留下如图所示的实线围成的部分,将所留部分折成一个正四棱锥.当该棱锥的体积取得最大值时,其底面棱长为________.15.如图,在中,,,,点在边上,且,将射线绕着逆时针方向旋转,并在所得射线上取一点,使得,连接,则的面积为__________.16.某地区教育主管部门为了对该地区模拟考试成绩进行分析,随机抽取了150分到450分之间的1000名学生的成绩,并根据这1000名学生的成绩画出样本的频率分布直方图(如图),则成绩在[250,400)内的学生共有____人.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在极坐标系中,直线的极坐标方程为,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,曲线的参数方程为(为参数),求直线与曲线的交点的直角坐标.18.(12分)在直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,曲线的极坐标方程为.(1)求曲线的直角坐标方程和曲线的参数方程;(2)设曲线与曲线在第二象限的交点为,曲线与轴的交点为,点,求的周长的最大值.19.(12分)已知中,角,,的对边分别为,,,已知向量,且.(1)求角的大小;(2)若的面积为,,求.20.(12分)设的内角的对边分别为,已知.(1)求;(2)若为锐角三角形,求的取值范围.21.(12分)已知公比为正数的等比数列的前项和为,且,.(1)求数列的通项公式;(2)设,求数列的前项和.22.(10分)已知.(1)若曲线在点处的切线也与曲线相切,求实数的值;(2)试讨论函数零点的个数.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
如图所示,设的中点为,的外接圆的圆心为,四面体的外接球的球心为,连接,利用正弦定理可得,利用球心的性质和线面垂直的性质可得四边形为平行四边形,最后利用勾股定理可求外接球的半径,从而可得外接球的表面积.【题目详解】如图所示,设的中点为,外接圆的圆心为,四面体的外接球的球心为,连接,则平面,.因为,故,因为,故.由正弦定理可得,故,又因为,故.因为,故平面,所以,因为平面,平面,故,故,所以四边形为平行四边形,所以,所以,故外接球的半径为,外接球的表面积为.故选:D.【题目点拨】本题考查平面图形的折叠以及三棱锥外接球表面积的计算,还考查正弦定理和余弦定理,折叠问题注意翻折前后的变量与不变量,外接球问题注意先确定外接球的球心的位置,然后把半径放置在可解的直角三角形中来计算,本题有一定的难度.2、B【解题分析】
求出圆心,代入渐近线方程,找到的关系,即可求解.【题目详解】解:,一条渐近线,故选:B【题目点拨】利用的关系求双曲线的离心率,是基础题.3、B【解题分析】
分三种情况,任务A排在第一位时,E排在第二位;任务A排在第二位时,E排在第三位;任务A排在第三位时,E排在第四位,结合任务B和C不能相邻,分别求出三种情况的排列方法,即可得到答案.【题目详解】六项不同的任务分别为A、B、C、D、E、F,如果任务A排在第一位时,E排在第二位,剩下四个位置,先排好D、F,再在D、F之间的3个空位中插入B、C,此时共有排列方法:;如果任务A排在第二位时,E排在第三位,则B,C可能分别在A、E的两侧,排列方法有,可能都在A、E的右侧,排列方法有;如果任务A排在第三位时,E排在第四位,则B,C分别在A、E的两侧;所以不同的执行方案共有种.【题目点拨】本题考查了排列组合问题,考查了学生的逻辑推理能力,属于中档题.4、A【解题分析】
首先画出可行域,利用目标函数的几何意义求的最小值.【题目详解】解:作出实数,满足不等式组表示的平面区域(如图示:阴影部分)由得,由得,平移,易知过点时直线在上截距最小,所以.故选:A.【题目点拨】本题考查了简单线性规划问题,求目标函数的最值先画出可行域,利用几何意义求值,属于中档题.5、D【解题分析】可以是共4个,选D.6、C【解题分析】
根据题意,将a、b代入,利用基本不等式求出最小值即可.【题目详解】∵a>0,b>0,a+b=1,∴,当且仅当时取“=”号.
答案:C【题目点拨】本题考查基本不等式的应用,“1”的应用,利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是首先要判断参数是否为正;二定是其次要看和或积是否为定值(和定积最大,积定和最小);三相等是最后一定要验证等号能否成立,属于基础题.7、B【解题分析】
分两类:一类是医院A只分配1人,另一类是医院A分配2人,分别计算出两类的分配种数,再由加法原理即可得到答案.【题目详解】根据医院A的情况分两类:第一类:若医院A只分配1人,则乙必在医院B,当医院B只有1人,则共有种不同分配方案,当医院B有2人,则共有种不同分配方案,所以当医院A只分配1人时,共有种不同分配方案;第二类:若医院A分配2人,当乙在医院A时,共有种不同分配方案,当乙不在A医院,在B医院时,共有种不同分配方案,所以当医院A分配2人时,共有种不同分配方案;共有20种不同分配方案.故选:B【题目点拨】本题考查排列与组合的综合应用,在做此类题时,要做到分类不重不漏,考查学生分类讨论的思想,是一道中档题.8、A【解题分析】
先利用换底公式将对数都化为以2为底,利用对数函数单调性可比较,再由中间值1可得三者的大小关系.【题目详解】,,,因此,故选:A.【题目点拨】本题主要考查了利用对数函数和指数函数的单调性比较大小,属于基础题.9、B【解题分析】
画出可行域和目标函数,根据平移得到最值点,再利用均值不等式得到答案.【题目详解】如图所示,画出可行域和目标函数,根据图像知:当时,有最大值为,即,故..当,即时等号成立.故选:.【题目点拨】本题考查了线性规划中根据最值求参数,均值不等式,意在考查学生的综合应用能力.10、D【解题分析】
利用一元二次不等式的解法和集合的交运算求解即可.【题目详解】由题意知,集合,,由集合的交运算可得,.故选:D【题目点拨】本题考查一元二次不等式的解法和集合的交运算;考查运算求解能力;属于基础题.11、B【解题分析】
根据函数对称性和单调性的关系,进行判断即可.【题目详解】由得关于对称,若关于对称,则函数在上不可能是单调的,故错误的可能是或者是,若错误,则在,上是减函数,在在上是增函数,则为函数的最小值,与矛盾,此时也错误,不满足条件.故错误的是,故选:.【题目点拨】本题主要考查函数性质的综合应用,结合对称性和单调性的关系是解决本题的关键.12、D【解题分析】
设双曲线的左焦点为,连接,,,设,则,,,和中,利用勾股定理计算得到答案.【题目详解】设双曲线的左焦点为,连接,,,设,则,,,,根据对称性知四边形为矩形,中:,即,解得;中:,即,故,故.故选:.【题目点拨】本题考查了双曲线离心率,意在考查学生的计算能力和综合应用能力.二、填空题:本题共4小题,每小题5分,共20分。13、1【解题分析】
由得时,,两式作差,可求得数列的通项公式,进一步求出数列的和.【题目详解】解:数列的前项和为,,且满足,①当时,,②①-②得:,整理得:(常数),故数列是以为首项,2为公比的等比数列,所以(首项不符合通项),故,所以:,故答案为:1.【题目点拨】本题主要考查数列的通项公式的求法及应用,数列的前项和的公式,属于基础题.14、【解题分析】
根据题意,建立棱锥体积的函数,利用导数求函数的最大值即可.【题目详解】设底面边长为,则斜高为,即此四棱锥的高为,所以此四棱锥体积为,令,令,易知函数在时取得最大值.故此时底面棱长.故答案为:.【题目点拨】本题考查棱锥体积的求解,涉及利用导数研究体积最大值的问题,属综合中档题.15、【解题分析】
由余弦定理求得,再结合正弦定理得,进而得,得,则面积可求【题目详解】由,得,解得.因为,所以,,所以.又因为,所以.因为,所以.故答案为【题目点拨】本题考查正弦定理、余弦定理的应用,考查运算求解能力,是中档题16、750【解题分析】因为0.001+0.001+0.004+a+0.005+0.003×50=1,得a=0.006所以1000×0.004+0.006+0.005三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、【解题分析】
将直线的极坐标方程和曲线的参数方程分别化为直角坐标方程,联立直角坐标方程求出交点坐标,结合的取值范围进行取舍即可.【题目详解】因为直线的极坐标方程为,所以直线的普通方程为,又因为曲线的参数方程为(为参数),所以曲线的直角坐标方程为,联立方程,解得或,因为,所以舍去,故点的直角坐标为.【题目点拨】本题考查极坐标方程、参数方程与直角坐标方程的互化;考查运算求解能力;熟练掌握极坐标方程、参数方程与直角坐标方程的互化公式是求解本题的关键;属于中档题、常考题型.18、(1)曲线的直角坐标方程为,曲线的参数方程为为参数(2)【解题分析】
(1)将代入,可得,所以曲线的直角坐标方程为.由可得,将,代入上式,可得,整理可得,所以曲线的参数方程为为参数.(2)由题可设,,,所以,,,所以,因为,所以,所以当,即时,l取得最大值为,所以的周长的最大值为.19、(1);(2).【解题分析】试题分析:(1)利用已知及平面向量数量积运算可得,利用正弦定理可得,结合,可求,从而可求的值;(2)由三角形的面积可解得,利用余弦定理可得,故可得.试题解析:(1)∵,,,∴,∴,即,又∵,∴,又∵,∴.(2)∵,∴,又,即,∴,故.20、(1)(2)【解题分析】
(1)利用正弦定理化简已知条件,由此求得的值,进而求得的大小.(2)利用正弦定理和两角差的正弦公式,求得的表达式,进而求得的取值范围.【题目详解】(1)由题设知,,即,所以,即,又所以.(2)由题设知,,即,又为锐角三角形,所以,即所以,即,所以的取值范围是.【题目点拨】本小题主要考查利用正弦定理解三角形,考查利用角的范围,求边的比值的取值范围,属于中档题.21、(1)(2)【解题分析】
(1)判断公比不为1,运用等比数列的求和公式,解方程可得公比,进而得到所求通项公式;(2)求得,运用数列的错位相减法求和,以及等比数列的求和公式,计算可得所求和.【题目详解】解:(1)设公比为正数的等比数列的前项和为,且,,可得时,,不成立;当时,,即,解得(舍去),则;(2),前
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 招聘新人工作规划
- 老年病学骨质疏松
- 员工用电安全知识培训
- 羊水栓塞抢救及护理
- 2016中国企业培训与发展年会-知识分享
- 浙江省杭州市钱塘联盟2024-2025学年高一上学期11月期中英语试题 含解析
- 钉钉后台操作培训
- 职业病科专家介绍
- 浙江省台金七校联盟2024-2025学年高一上学期期中联考数学试题 含解析
- 2020-2021学年人教部编版语文三年级上册-《在牛肚子里旅行》教案
- 《CIGS太阳电池》课件
- 国开(内蒙古)2024年《创新创业教育基础》形考任务1-3终考任务答案
- GB/T 18029.8-2024轮椅车第8部分:静态强度、冲击强度及疲劳强度的要求和测试方法
- 2024入团知识题库(含答案)
- DLT 1055-2021 火力发电厂汽轮机技术监督导则
- 挂式笔记本电脑支架的设计
- 好--工程量清单计价实例(含图纸)
- 中国已入财富6点0时代了无数人思维还停在1点0阶段
- 在教师家属座谈会上的讲话
- 探析铝模板及爬架在高层建筑施工中的应用
- 2020幼儿园教师工作考核记载卡
评论
0/150
提交评论