版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省元阳县第三中学2024届高三数学试题3月联考试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数.设,若对任意不相等的正数,,恒有,则实数a的取值范围是()A. B.C. D.2.已知f(x)=ax2+bx是定义在[a–1,2a]上的偶函数,那么a+b的值是A. B.C. D.3.已知函数的最大值为,若存在实数,使得对任意实数总有成立,则的最小值为()A. B. C. D.4.函数f(x)=的图象大致为()A. B.C. D.5.设为定义在上的奇函数,当时,(为常数),则不等式的解集为()A. B. C. D.6.已知各项都为正的等差数列中,,若,,成等比数列,则()A. B. C. D.7.已知实数满足则的最大值为()A.2 B. C.1 D.08.已知.给出下列判断:①若,且,则;②存在使得的图象向右平移个单位长度后得到的图象关于轴对称;③若在上恰有7个零点,则的取值范围为;④若在上单调递增,则的取值范围为.其中,判断正确的个数为()A.1 B.2 C.3 D.49.若为虚数单位,网格纸上小正方形的边长为1,图中复平面内点表示复数,则表示复数的点是()A.E B.F C.G D.H10.a为正实数,i为虚数单位,,则a=()A.2 B. C. D.111.已知抛物线:,直线与分别相交于点,与的准线相交于点,若,则()A.3 B. C. D.12.已知函数,若关于的方程有4个不同的实数根,则实数的取值范围为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.学校艺术节对同一类的,,,四件参赛作品,只评一件一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:甲说:“或作品获得一等奖”;乙说:“作品获得一等奖”;丙说:“,两项作品未获得一等奖”;丁说:“作品获得一等奖”.若这四位同学中有且只有两位说的话是对的,则获得一等奖的作品是______.14.已知实数满约束条件,则的最大值为___________.15.设平面向量与的夹角为,且,,则的取值范围为______.16.已知,,其中,为正的常数,且,则的值为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)分别为的内角的对边.已知.(1)若,求;(2)已知,当的面积取得最大值时,求的周长.18.(12分)已知数列的各项都为正数,,且.(Ⅰ)求数列的通项公式;(Ⅱ)设,其中表示不超过x的最大整数,如,,求数列的前2020项和.19.(12分)已知函数的导函数的两个零点为和.(1)求的单调区间;(2)若的极小值为,求在区间上的最大值.20.(12分)在中,角的对边分别为,且.(1)求角的大小;(2)已知外接圆半径,求的周长.21.(12分)若养殖场每个月生猪的死亡率不超过,则该养殖场考核为合格,该养殖场在2019年1月到8月养殖生猪的相关数据如下表所示:月份1月2月3月4月5月6月7月8月月养殖量/千只33456791012月利润/十万元3.64.14.45.26.27.57.99.1生猪死亡数/只293749537798126145(1)从该养殖场2019年2月到6月这5个月中任意选取3个月,求恰好有2个月考核获得合格的概率;(2)根据1月到8月的数据,求出月利润y(十万元)关于月养殖量x(千只)的线性回归方程(精确到0.001).(3)预计在今后的养殖中,月利润与月养殖量仍然服从(2)中的关系,若9月份的养殖量为1.5万只,试估计:该月利润约为多少万元?附:线性回归方程中斜率和截距用最小二乘法估计计算公式如下:,参考数据:.22.(10分)在中,角的对边分别为,且,.(1)求的值;(2)若求的面积.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
求解的导函数,研究其单调性,对任意不相等的正数,构造新函数,讨论其单调性即可求解.【题目详解】的定义域为,,当时,,故在单调递减;不妨设,而,知在单调递减,从而对任意、,恒有,即,,,令,则,原不等式等价于在单调递减,即,从而,因为,所以实数a的取值范围是故选:D.【题目点拨】此题考查含参函数研究单调性问题,根据参数范围化简后构造新函数转换为含参恒成立问题,属于一般性题目.2、B【解题分析】
依照偶函数的定义,对定义域内的任意实数,f(﹣x)=f(x),且定义域关于原点对称,a﹣1=﹣2a,即可得解.【题目详解】根据偶函数的定义域关于原点对称,且f(x)是定义在[a–1,2a]上的偶函数,得a–1=–2a,解得a=,又f(–x)=f(x),∴b=0,∴a+b=.故选B.【题目点拨】本题考查偶函数的定义,对定义域内的任意实数,f(﹣x)=f(x);奇函数和偶函数的定义域必然关于原点对称,定义域区间两个端点互为相反数.3、B【解题分析】
根据三角函数的两角和差公式得到,进而可以得到函数的最值,区间(m,n)长度要大于等于半个周期,最终得到结果.【题目详解】函数则函数的最大值为2,存在实数,使得对任意实数总有成立,则区间(m,n)长度要大于等于半个周期,即故答案为:B.【题目点拨】这个题目考查了三角函数的两角和差的正余弦公式的应用,以及三角函数的图像的性质的应用,题目比较综合.4、D【解题分析】
根据函数为非偶函数可排除两个选项,再根据特殊值可区分剩余两个选项.【题目详解】因为f(-x)=≠f(x)知f(x)的图象不关于y轴对称,排除选项B,C.又f(2)==-<0.排除A,故选D.【题目点拨】本题主要考查了函数图象的对称性及特值法区分函数图象,属于中档题.5、D【解题分析】
由可得,所以,由为定义在上的奇函数结合增函数+增函数=增函数,可知在上单调递增,注意到,再利用函数单调性即可解决.【题目详解】因为在上是奇函数.所以,解得,所以当时,,且时,单调递增,所以在上单调递增,因为,故有,解得.故选:D.【题目点拨】本题考查利用函数的奇偶性、单调性解不等式,考查学生对函数性质的灵活运用能力,是一道中档题.6、A【解题分析】试题分析:设公差为或(舍),故选A.考点:等差数列及其性质.7、B【解题分析】
作出可行域,平移目标直线即可求解.【题目详解】解:作出可行域:由得,由图形知,经过点时,其截距最大,此时最大得,当时,故选:B【题目点拨】考查线性规划,是基础题.8、B【解题分析】
对函数化简可得,进而结合三角函数的最值、周期性、单调性、零点、对称性及平移变换,对四个命题逐个分析,可选出答案.【题目详解】因为,所以周期.对于①,因为,所以,即,故①错误;对于②,函数的图象向右平移个单位长度后得到的函数为,其图象关于轴对称,则,解得,故对任意整数,,所以②错误;对于③,令,可得,则,因为,所以在上第1个零点,且,所以第7个零点,若存在第8个零点,则,所以,即,解得,故③正确;对于④,因为,且,所以,解得,又,所以,故④正确.故选:B.【题目点拨】本题考查三角函数的恒等变换,考查三角函数的平移变换、最值、周期性、单调性、零点、对称性,考查学生的计算求解能力与推理能力,属于中档题.9、C【解题分析】
由于在复平面内点的坐标为,所以,然后将代入化简后可找到其对应的点.【题目详解】由,所以,对应点.故选:C【题目点拨】此题考查的是复数与复平面内点的对就关系,复数的运算,属于基础题.10、B【解题分析】
,选B.11、C【解题分析】
根据抛物线的定义以及三角形的中位线,斜率的定义表示即可求得答案.【题目详解】显然直线过抛物线的焦点如图,过A,M作准线的垂直,垂足分别为C,D,过M作AC的垂线,垂足为E根据抛物线的定义可知MD=MF,AC=AF,又AM=MN,所以M为AN的中点,所以MD为三角形NAC的中位线,故MD=CE=EA=AC设MF=t,则MD=t,AF=AC=2t,所以AM=3t,在直角三角形AEM中,ME=所以故选:C【题目点拨】本题考查求抛物线的焦点弦的斜率,常见于利用抛物线的定义构建关系,属于中档题.12、C【解题分析】
求导,先求出在单增,在单减,且知设,则方程有4个不同的实数根等价于方程在上有两个不同的实数根,再利用一元二次方程根的分布条件列不等式组求解可得.【题目详解】依题意,,令,解得,,故当时,,当,,且,故方程在上有两个不同的实数根,故,解得.故选:C.【题目点拨】本题考查确定函数零点或方程根个数.其方法:(1)构造法:构造函数(易求,可解),转化为确定的零点个数问题求解,利用导数研究该函数的单调性、极值,并确定定义区间端点值的符号(或变化趋势)等,画出的图象草图,数形结合求解;(2)定理法:先用零点存在性定理判断函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值符号,进而判断函数在该区间上零点的个数.二、填空题:本题共4小题,每小题5分,共20分。13、B【解题分析】
首先根据“学校艺术节对四件参赛作品只评一件一等奖”,故假设分别为一等奖,然后判断甲、乙、丙、丁四位同学的说法的正确性,即可得出结果.【题目详解】若A为一等奖,则甲、丙、丁的说法均错误,不满足题意;若B为一等奖,则乙、丙的说法正确,甲、丁的说法错误,满足题意;若C为一等奖,则甲、丙、丁的说法均正确,不满足题意;若D为一等奖,则乙、丙、丁的说法均错误,不满足题意;综上所述,故B获得一等奖.【题目点拨】本题属于信息题,可根据题目所给信息来找出解题所需要的条件并得出答案,在做本题的时候,可以采用依次假设为一等奖并通过是否满足题目条件来判断其是否正确.14、8【解题分析】
画出可行域和目标函数,根据平移计算得到答案.【题目详解】根据约束条件,画出可行域,图中阴影部分为可行域.又目标函数表示直线在轴上的截距,由图可知当经过点时截距最大,故的最大值为8.故答案为:.【题目点拨】本题考查了线性规划问题,画出图像是解题的关键.15、【解题分析】
根据已知条件计算出,结合得出,利用基本不等式可得出的取值范围,利用平面向量的数量积公式可求得的取值范围,进而可得出的取值范围.【题目详解】,,,由得,,由基本不等式可得,,,,,因此,的取值范围为.故答案为:.【题目点拨】本题考查利用向量的模求解平面向量夹角的取值范围,考查计算能力,属于中等题.16、【解题分析】
把已知等式变形,展开两角和与差的三角函数,结合已知求得值.【题目详解】解:由,得,,即,,又,,解得:.为正的常数,.故答案为:.【题目点拨】本题考查两角和与差的三角函数,考查数学转化思想方法,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】
(1)根据正弦定理,将,化角为边,即可求出,再利用正弦定理即可求出;(2)根据,选择,所以当的面积取得最大值时,最大,结合(1)中条件,即可求出最大时,对应的的值,再根据余弦定理求出边,进而得到的周长.【题目详解】(1)由,得,即.因为,所以.由,得.(2)因为,所以,当且仅当时,等号成立.因为的面积.所以当时,的面积取得最大值,此时,则,所以的周长为.【题目点拨】本题主要考查利用正弦定理和余弦定理解三角形,涉及到基本不等式的应用,意在考查学生的转化能力和数学运算能力.18、(Ⅰ);(Ⅱ)4953【解题分析】
(Ⅰ)递推公式变形为,由数列是正项数列,得到,根据数列是等比数列求通项公式;(Ⅱ),根据新定义和对数的运算分类讨论数列的通项公式,并求前2020项和.【题目详解】(Ⅰ)∵,∴,∴又∵数列的各项都为正数,∴,即.∴数列是以2为首项,2为公比的等比数列,∴.(Ⅱ)∵,∴,.∴数列的前2020项的和为.【题目点拨】本题考查根据数列的递推公式求通项公式和数列的前项和,意在考查转化与化归的思想,计算能力,属于中档题型.19、(1)单调递增区间是,单调递减区间是和;(2)最大值是.【解题分析】
(1)求得,由题意可知和是函数的两个零点,根据函数的符号变化可得出的符号变化,进而可得出函数的单调递增区间和递减区间;(2)由(1)中的结论知,函数的极小值为,进而得出,解出、、的值,然后利用导数可求得函数在区间上的最大值.【题目详解】(1),令,因为,所以的零点就是的零点,且与符号相同.又因为,所以当时,,即;当或时,,即.所以,函数的单调递增区间是,单调递减区间是和;(2)由(1)知,是的极小值点,所以有,解得,,,所以.因为函数的单调递增区间是,单调递减区间是和.所以为函数的极大值,故在区间上的最大值取和中的最大者,而,所以函数在区间上的最大值是.【题目点拨】本题考查利用导数求函数的单调区间与最值,考查计算能力,属于中等题.20、(1)(2)3+3【解题分析】
(1)利用余弦的二倍角公式和同角三角函数关系式化简整理并结合范围0<A<π,可求A的值.(2)由正弦
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年区块链技术应用名义董事聘用与智能合约合同3篇
- 2024年专业箱梁吊装工程服务承包合同版B版
- 2024年城市综合体物业管理合作协议书3篇
- 2024年技术研发合作与专利申请咨询协议3篇
- 2024年个人车辆抵押贷款3篇
- 2024年度智能配电室安装与调试服务合同范本3篇
- 2024年度矿产开发与投资合同3篇
- 2024年全职教师劳动协议版A版
- 2024巡演活动实施细则合同版
- 2024年度青岛购房合同范本:期房购买风险防范3篇
- 案例4:电力系统有功功率
- 人教版数学四年级上册-第五单元-平行四边形和梯形-单元测试卷(含答案)
- 研究生考试考研计算机学科专业基础(408)试卷与参考答案(2024年)
- 招聘与员工管理制度
- 2024年下半年广东广州海珠区总工会招考9人易考易错模拟试题(共500题)试卷后附参考答案
- 2024年统编版七年级语文上册期末测试卷(附答案)
- 2024年婴幼儿发展引导员(初级)职业技能鉴定考试题库(含答案)
- 网络评论员培训
- 全运会知识竞赛试题
- 产品质量承诺及质量保证措施
- CMA质量记录表格
评论
0/150
提交评论