云南省楚雄州姚安县一中2024届高三第一次月考考试数学试题理_第1页
云南省楚雄州姚安县一中2024届高三第一次月考考试数学试题理_第2页
云南省楚雄州姚安县一中2024届高三第一次月考考试数学试题理_第3页
云南省楚雄州姚安县一中2024届高三第一次月考考试数学试题理_第4页
云南省楚雄州姚安县一中2024届高三第一次月考考试数学试题理_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省楚雄州姚安县一中2024届高三第一次月考考试数学试题理请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知在平面直角坐标系中,圆:与圆:交于,两点,若,则实数的值为()A.1 B.2 C.-1 D.-22.若实数x,y满足条件,目标函数,则z的最大值为()A. B.1 C.2 D.03.已知双曲线的右焦点为,若双曲线的一条渐近线的倾斜角为,且点到该渐近线的距离为,则双曲线的实轴的长为A. B.C. D.4.若函数的定义域为M={x|-2≤x≤2},值域为N={y|0≤y≤2},则函数的图像可能是()A. B. C. D.5.已知函数,若,则的取值范围是()A. B. C. D.6.已知函,,则的最小值为()A. B.1 C.0 D.7.中国古代数学名著《九章算术》中记载了公元前344年商鞅督造的一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸),若取3,当该量器口密闭时其表面积为42.2(平方寸),则图中x的值为()A.3 B.3.4 C.3.8 D.48.若函数()的图象过点,则()A.函数的值域是 B.点是的一个对称中心C.函数的最小正周期是 D.直线是的一条对称轴9.已知定点都在平面内,定点是内异于的动点,且,那么动点在平面内的轨迹是()A.圆,但要去掉两个点 B.椭圆,但要去掉两个点C.双曲线,但要去掉两个点 D.抛物线,但要去掉两个点10.若复数是纯虚数,则()A.3 B.5 C. D.11.等比数列的各项均为正数,且,则()A.12 B.10 C.8 D.12.已知全集,集合,,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在三棱锥中,,,两两垂直且,点为的外接球上任意一点,则的最大值为______.14.在的展开式中,项的系数是__________(用数字作答).15.已知,记,则的展开式中各项系数和为__________.16.已知双曲线(a>0,b>0)的两个焦点为、,点P是第一象限内双曲线上的点,且,tan∠PF2F1=﹣2,则双曲线的离心率为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)的内角的对边分别为,若(1)求角的大小(2)若,求的周长18.(12分)在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:ρcos2θ=4asinθ (a>0),直线l的参数方程为x=-2+22t,y=-1+(I)写出曲线C的直角坐标方程和直线l的普通方程(不要求具体过程);(II)设P(-2,-1),若|PM|,|MN|,|PN|成等比数列,求a的值.19.(12分)设数阵,其中、、、.设,其中,且.定义变换为“对于数阵的每一行,若其中有或,则将这一行中每个数都乘以;若其中没有且没有,则这一行中所有数均保持不变”(、、、).表示“将经过变换得到,再将经过变换得到、,以此类推,最后将经过变换得到”,记数阵中四个数的和为.(1)若,写出经过变换后得到的数阵;(2)若,,求的值;(3)对任意确定的一个数阵,证明:的所有可能取值的和不超过.20.(12分)在①,②,③这三个条件中任选一个,补充在下面问题中,求的面积的值(或最大值).已知的内角,,所对的边分别为,,,三边,,与面积满足关系式:,且,求的面积的值(或最大值).21.(12分)已知,均为正项数列,其前项和分别为,,且,,,当,时,,.(1)求数列,的通项公式;(2)设,求数列的前项和.22.(10分)市民小张计划贷款60万元用于购买一套商品住房,银行给小张提供了两种贷款方式.①等额本金:每月的还款额呈递减趋势,且从第二个还款月开始,每月还款额与上月还款额的差均相同;②等额本息:每个月的还款额均相同.银行规定,在贷款到账日的次月当天开始首次还款(若2019年7月7日贷款到账,则2019年8月7日首次还款).已知小张该笔贷款年限为20年,月利率为0.004.(1)若小张采取等额本金的还款方式,现已得知第一个还款月应还4900元,最后一个还款月应还2510元,试计算小张该笔贷款的总利息;(2)若小张采取等额本息的还款方式,银行规定,每月还款额不得超过家庭平均月收入的一半,已知小张家庭平均月收入为1万元,判断小张该笔贷款是否能够获批(不考虑其他因素);(3)对比两种还款方式,从经济利益的角度来考虑,小张应选择哪种还款方式.参考数据:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】

由可得,O在AB的中垂线上,结合圆的性质可知O在两个圆心的连线上,从而可求.【题目详解】因为,所以O在AB的中垂线上,即O在两个圆心的连线上,,,三点共线,所以,得,故选D.【题目点拨】本题主要考查圆的性质应用,几何性质的转化是求解的捷径.2、C【解题分析】

画出可行域和目标函数,根据平移得到最大值.【题目详解】若实数x,y满足条件,目标函数如图:当时函数取最大值为故答案选C【题目点拨】求线性目标函数的最值:当时,直线过可行域且在轴上截距最大时,值最大,在轴截距最小时,z值最小;当时,直线过可行域且在轴上截距最大时,值最小,在轴上截距最小时,值最大.3、B【解题分析】

双曲线的渐近线方程为,由题可知.设点,则点到直线的距离为,解得,所以,解得,所以双曲线的实轴的长为,故选B.4、B【解题分析】因为对A不符合定义域当中的每一个元素都有象,即可排除;对B满足函数定义,故符合;对C出现了定义域当中的一个元素对应值域当中的两个元素的情况,不符合函数的定义,从而可以否定;对D因为值域当中有的元素没有原象,故可否定.故选B.5、B【解题分析】

对分类讨论,代入解析式求出,解不等式,即可求解.【题目详解】函数,由得或解得.故选:B.【题目点拨】本题考查利用分段函数性质解不等式,属于基础题.6、B【解题分析】

,利用整体换元法求最小值.【题目详解】由已知,又,,故当,即时,.故选:B.【题目点拨】本题考查整体换元法求正弦型函数的最值,涉及到二倍角公式的应用,是一道中档题.7、D【解题分析】

根据三视图即可求得几何体表面积,即可解得未知数.【题目详解】由图可知,该几何体是由一个长宽高分别为和一个底面半径为,高为的圆柱组合而成.该几何体的表面积为,解得,故选:D.【题目点拨】本题考查由三视图还原几何体,以及圆柱和长方体表面积的求解,属综合基础题.8、A【解题分析】

根据函数的图像过点,求出,可得,再利用余弦函数的图像与性质,得出结论.【题目详解】由函数()的图象过点,可得,即,,,故,对于A,由,则,故A正确;对于B,当时,,故B错误;对于C,,故C错误;对于D,当时,,故D错误;故选:A【题目点拨】本题主要考查了二倍角的余弦公式、三角函数的图像与性质,需熟记性质与公式,属于基础题.9、A【解题分析】

根据题意可得,即知C在以AB为直径的圆上.【题目详解】,,,又,,平面,又平面,故在以为直径的圆上,又是内异于的动点,所以的轨迹是圆,但要去掉两个点A,B故选:A【题目点拨】本题主要考查了线面垂直、线线垂直的判定,圆的性质,轨迹问题,属于中档题.10、C【解题分析】

先由已知,求出,进一步可得,再利用复数模的运算即可【题目详解】由z是纯虚数,得且,所以,.因此,.故选:C.【题目点拨】本题考查复数的除法、复数模的运算,考查学生的运算能力,是一道基础题.11、B【解题分析】

由等比数列的性质求得,再由对数运算法则可得结论.【题目详解】∵数列是等比数列,∴,,∴.故选:B.【题目点拨】本题考查等比数列的性质,考查对数的运算法则,掌握等比数列的性质是解题关键.12、B【解题分析】

直接利用集合的基本运算求解即可.【题目详解】解:全集,集合,,则,故选:.【题目点拨】本题考查集合的基本运算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

先根据三棱锥的几何性质,求出外接球的半径,结合向量的运算,将问题转化为求球体表面一点到外心距离最大的问题,即可求得结果.【题目详解】因为两两垂直且,故三棱锥的外接球就是对应棱长为2的正方体的外接球.且外接球的球心为正方体的体对角线的中点,如下图所示:容易知外接球半径为.设线段的中点为,故可得,故当取得最大值时,取得最大值.而当在同一个大圆上,且,点与线段在球心的异侧时,取得最大值,如图所示:此时,故答案为:.【题目点拨】本题考查球体的几何性质,几何体的外接球问题,涉及向量的线性运算以及数量积运算,属综合性困难题.14、【解题分析】的展开式的通项为:.令,得.答案为:-40.点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第r+1项,再由特定项的特点求出r值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第r+1项,由特定项得出r值,最后求出其参数.15、【解题分析】

根据定积分的计算,得到,令,求得,即可得到答案.【题目详解】根据定积分的计算,可得,令,则,即的展开式中各项系数和为.【题目点拨】本题主要考查了定积分的应用,以及二项式定理的应用,其中解答中根据定积分的计算和二项式定理求得的表示是解答本题的关键,着重考查了运算与求解能力,属于基础题.16、【解题分析】

根据正弦定理得,根据余弦定理得2PF1•PF2cos∠F1PF23,联立方程得到,计算得到答案.【题目详解】∵△PF1F2中,sin∠PF1F2═,sin∠PF1F2═,∴由正弦定理得,①又∵,tan∠PF2F1=﹣2,∴tan∠F1PF2=﹣tan(∠PF2F1+∠PF1F2),可得cos∠F1PF2,△PF1F2中用余弦定理,得2PF1•PF2cos∠F1PF23,②①②联解,得,可得,∴双曲线的,结合,得离心率.故答案为:.【题目点拨】本题考查了双曲线离心率,意在考查学生的计算能力和转化能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)11【解题分析】

(1)利用二倍角公式将式子化简成,再利用两角和与差的余弦公式即可求解.(2)利用余弦定理可得,再将平方,利用向量数量积可得,从而可求周长.【题目详解】由题解得,所以由余弦定理,,再由解得:所以故的周长为【题目点拨】本题主要考查了余弦定理解三角形、两角和与差的余弦公式、需熟记公式,属于基础题.18、(I)x2=4aya>0,x-y+1=0【解题分析】

(I)利用所给的极坐标方程和参数方程,直接整理化简得到直角坐标方程和普通方程;(II)联立直线的参数方程和C的直角坐标方程,结合韦达定理以及等比数列的性质即可求得答案.【题目详解】(I)曲线C:ρcos2可得ρ2cos2直线l的参数方程为x=-2+22t,x-y=-1,得x-y+1=0;(II)将x=-2+22t,y=-1+2t韦达定理:t1由题意得MN2=PM可得(t即32(a+1)解得a=【题目点拨】本题考查了极坐标方程、参数方程与直角坐标和普通方程的互化,以及参数方程的综合知识,结合等比数列,熟练运用知识,属于较易题.19、(1);(2);(3)见解析.【解题分析】

(1)由,能求出经过变换后得到的数阵;(2)由,,求出数阵经过变化后的矩阵,进而可求得的值;(3)分和两种情况讨论,推导出变换后数阵的第一行和第二行的数字之和,由此能证明的所有可能取值的和不超过.【题目详解】(1),经过变换后得到的数阵;(2)经变换后得,故;(3)若,在的所有非空子集中,含有且不含的子集共个,经过变换后第一行均变为、;含有且不含的子集共个,经过变换后第一行均变为、;同时含有和的子集共个,经过变换后第一行仍为、;不含也不含的子集共个,经过变换后第一行仍为、.所以经过变换后所有的第一行的所有数的和为.若,则的所有非空子集中,含有的子集共个,经过变换后第一行均变为、;不含有的子集共个,经过变换后第一行仍为、.所以经过变换后所有的第一行的所有数的和为.同理,经过变换后所有的第二行的所有数的和为.所以的所有可能取值的和为,又因为、、、,所以的所有可能取值的和不超过.【题目点拨】本题考查数阵变换的求法,考查数阵中四个数的和不超过的证明,考查类比推理、数阵变换等基础知识,考查运算求解能力,综合性强,难度大.20、见解析【解题分析】

若选择①,结合三角形的面积公式,得,化简得到,则,又,从而得到,将代入,得.又,∴,当且仅当时等号成立.∴,故的面积的最大值为,此时.若选择②,,结合三角形的面积公式,得,化简得到,则,又,从而得到,则,此时为等腰直角三角形,.若选择③,,则结合三角形的面积公式,得,化简得到,则,又,从而得到,则.21、(1),(2)【解题分析】

(1),所,两式相减,即可得到数列递推关系求解通项公式,由,整理得,得到,即可求解通项公式;(2)由(1)可知,,即可求得数列的前项和.【题目详解】(1)因为,所,两式相减,整理得,当时,,解得,所以数列是首项和公比均为的等比

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论