




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省广州市番禺区2024届高三年级数学试题周测三注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若满足约束条件则的最大值为()A.10 B.8 C.5 D.32.“”是“函数的图象关于直线对称”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.已知分别为圆与的直径,则的取值范围为()A. B. C. D.4.为研究语文成绩和英语成绩之间是否具有线性相关关系,统计两科成绩得到如图所示的散点图(两坐标轴单位长度相同),用回归直线近似地刻画其相关关系,根据图形,以下结论最有可能成立的是()A.线性相关关系较强,b的值为1.25B.线性相关关系较强,b的值为0.83C.线性相关关系较强,b的值为-0.87D.线性相关关系太弱,无研究价值5.数学中有许多形状优美、寓意美好的曲线,例如:四叶草曲线就是其中一种,其方程为.给出下列四个结论:①曲线有四条对称轴;②曲线上的点到原点的最大距离为;③曲线第一象限上任意一点作两坐标轴的垂线与两坐标轴围成的矩形面积最大值为;④四叶草面积小于.其中,所有正确结论的序号是()A.①② B.①③ C.①③④ D.①②④6.已知某几何体的三视图如图所示,其中正视图与侧视图是全等的直角三角形,则该几何体的各个面中,最大面的面积为()A.2 B.5 C. D.7.要得到函数的图象,只需将函数的图象上所有点的()A.横坐标缩短到原来的(纵坐标不变),再向左平移个单位长度B.横坐标缩短到原来的(纵坐标不变),再向右平移个单位长度C.横坐标伸长到原来的2倍(纵坐标不变),再向左平移个单位长度D.横坐标伸长到原来的2倍(纵坐标不变),再向右平移个单位长度8.定义在R上的函数满足,为的导函数,已知的图象如图所示,若两个正数满足,的取值范围是()A. B. C. D.9.设全集U=R,集合,则()A. B. C. D.10.已知函数,若函数的所有零点依次记为,且,则()A. B. C. D.11.已知中,,则()A.1 B. C. D.12.设是虚数单位,则“复数为纯虚数”是“”的()A.充要条件 B.必要不充分条件C.既不充分也不必要条件 D.充分不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.如图是九位评委打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均分为_______.14.若满足约束条件,则的最大值为__________.15.已知非零向量的夹角为,且,则______.16.已知为正实数,且,则的最小值为____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在正四棱锥中,,,为上的四等分点,即.(1)证明:平面平面;(2)求平面与平面所成锐二面角的余弦值.18.(12分)已知数列和满足,,,,.(Ⅰ)求与;(Ⅱ)记数列的前项和为,且,若对,恒成立,求正整数的值.19.(12分)已知f(x)=|x+3|-|x-2|(1)求函数f(x)的最大值m;(2)正数a,b,c满足a+2b+3c=m,求证:20.(12分)为了解网络外卖的发展情况,某调查机构从全国各城市中抽取了100个相同等级地城市,分别调查了甲乙两家网络外卖平台(以下简称外卖甲、外卖乙)在今年3月的订单情况,得到外卖甲该月订单的频率分布直方图,外卖乙该月订单的频数分布表,如下图表所示.订单:(单位:万件)频数1223订单:(单位:万件)频数402020102(1)现规定,月订单不低于13万件的城市为“业绩突出城市”,填写下面的列联表,并根据列联表判断是否有90%的把握认为“是否为业绩突出城市”与“选择网络外卖平台”有关.业绩突出城市业绩不突出城市总计外卖甲外卖乙总计(2)由频率分布直方图可以认为,外卖甲今年3月在全国各城市的订单数(单位:万件)近似地服从正态分布,其中近似为样本平均数(同一组数据用该区间的中点值作代表),的值已求出,约为3.64,现把频率视为概率,解决下列问题:①从全国各城市中随机抽取6个城市,记为外卖甲在今年3月订单数位于区间的城市个数,求的数学期望;②外卖甲决定在今年3月订单数低于7万件的城市开展“订外卖,抢红包”的营销活动来提升业绩,据统计,开展此活动后城市每月外卖订单数将提高到平均每月9万件的水平,现从全国各月订单数不超过7万件的城市中采用分层抽样的方法选出100个城市不开展营销活动,若每按一件外卖订单平均可获纯利润5元,但每件外卖平均需送出红包2元,则外卖甲在这100个城市中开展营销活动将比不开展营销活动每月多盈利多少万元?附:①参考公式:,其中.参考数据:0.150.100.050.0250.0100.0012.7022.7063.8415.0246.63510.828②若,则,.21.(12分)设函数,直线与函数图象相邻两交点的距离为.(Ⅰ)求的值;(Ⅱ)在中,角所对的边分别是,若点是函数图象的一个对称中心,且,求面积的最大值.22.(10分)已知函数(为常数)(Ⅰ)当时,求的单调区间;(Ⅱ)若为增函数,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
画出可行域,将化为,通过平移即可判断出最优解,代入到目标函数,即可求出最值.【题目详解】解:由约束条件作出可行域如图,化目标函数为直线方程的斜截式,.由图可知当直线过时,直线在轴上的截距最大,有最大值为3.故选:D.【题目点拨】本题考查了线性规划问题.一般第一步画出可行域,然后将目标函数转化为的形式,在可行域内通过平移找到最优解,将最优解带回到目标函数即可求出最值.注意画可行域时,边界线的虚实问题.2、A【解题分析】
先求解函数的图象关于直线对称的等价条件,得到,分析即得解.【题目详解】若函数的图象关于直线对称,则,解得,故“”是“函数的图象关于直线对称”的充分不必要条件.故选:A【题目点拨】本题考查了充分不必要条件的判断,考查了学生逻辑推理,概念理解,数学运算的能力,属于基础题.3、A【解题分析】
由题先画出基本图形,结合向量加法和点乘运算化简可得,结合的范围即可求解【题目详解】如图,其中,所以.故选:A【题目点拨】本题考查向量的线性运算在几何中的应用,数形结合思想,属于中档题4、B【解题分析】
根据散点图呈现的特点可以看出,二者具有相关关系,且斜率小于1.【题目详解】散点图里变量的对应点分布在一条直线附近,且比较密集,故可判断语文成绩和英语成绩之间具有较强的线性相关关系,且直线斜率小于1,故选B.【题目点拨】本题主要考查散点图的理解,侧重考查读图识图能力和逻辑推理的核心素养.5、C【解题分析】
①利用之间的代换判断出对称轴的条数;②利用基本不等式求解出到原点的距离最大值;③将面积转化为的关系式,然后根据基本不等式求解出最大值;④根据满足的不等式判断出四叶草与对应圆的关系,从而判断出面积是否小于.【题目详解】①:当变为时,不变,所以四叶草图象关于轴对称;当变为时,不变,所以四叶草图象关于轴对称;当变为时,不变,所以四叶草图象关于轴对称;当变为时,不变,所以四叶草图象关于轴对称;综上可知:有四条对称轴,故正确;②:因为,所以,所以,所以,取等号时,所以最大距离为,故错误;③:设任意一点,所以围成的矩形面积为,因为,所以,所以,取等号时,所以围成矩形面积的最大值为,故正确;④:由②可知,所以四叶草包含在圆的内部,因为圆的面积为:,所以四叶草的面积小于,故正确.故选:C.【题目点拨】本题考查曲线与方程的综合运用,其中涉及到曲线的对称性分析以及基本不等式的运用,难度较难.分析方程所表示曲线的对称性,可通过替换方程中去分析证明.6、D【解题分析】
根据三视图还原出几何体,找到最大面,再求面积.【题目详解】由三视图可知,该几何体是一个三棱锥,如图所示,将其放在一个长方体中,并记为三棱锥.,,,故最大面的面积为.选D.【题目点拨】本题主要考查三视图的识别,复杂的三视图还原为几何体时,一般借助长方体来实现.7、C【解题分析】
根据三角函数图像的变换与参数之间的关系,即可容易求得.【题目详解】为得到,将横坐标伸长到原来的2倍(纵坐标不变),故可得;再将向左平移个单位长度,故可得.故选:C.【题目点拨】本题考查三角函数图像的平移,涉及诱导公式的使用,属基础题.8、C【解题分析】
先从函数单调性判断的取值范围,再通过题中所给的是正数这一条件和常用不等式方法来确定的取值范围.【题目详解】由的图象知函数在区间单调递增,而,故由可知.故,又有,综上得的取值范围是.故选:C【题目点拨】本题考查了函数单调性和不等式的基础知识,属于中档题.9、A【解题分析】
求出集合M和集合N,,利用集合交集补集的定义进行计算即可.【题目详解】,,则,故选:A.【题目点拨】本题考查集合的交集和补集的运算,考查指数不等式和二次不等式的解法,属于基础题.10、C【解题分析】
令,求出在的对称轴,由三角函数的对称性可得,将式子相加并整理即可求得的值.【题目详解】令,得,即对称轴为.函数周期,令,可得.则函数在上有8条对称轴.根据正弦函数的性质可知,将以上各式相加得:故选:C.【题目点拨】本题考查了三角函数的对称性,考查了三角函数的周期性,考查了等差数列求和.本题的难点是将所求的式子拆分为的形式.11、C【解题分析】
以为基底,将用基底表示,根据向量数量积的运算律,即可求解.【题目详解】,,.故选:C.【题目点拨】本题考查向量的线性运算以及向量的基本定理,考查向量数量积运算,属于中档题.12、D【解题分析】
结合纯虚数的概念,可得,再结合充分条件和必要条件的定义即可判定选项.【题目详解】若复数为纯虚数,则,所以,若,不妨设,此时复数,不是纯虚数,所以“复数为纯虚数”是“”的充分不必要条件.故选:D【题目点拨】本题考查充分条件和必要条件,考查了纯虚数的概念,理解充分必要条件的逻辑关系是解题的关键,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、1【解题分析】
写出茎叶图对应的所有的数,去掉最高分,最低分,再求平均分.【题目详解】解:所有的数为:77,78,82,84,84,86,88,93,94,共9个数,去掉最高分,最低分,剩下78,82,84,84,86,88,93,共7个数,平均分为,故答案为1.【题目点拨】本题考查茎叶图及平均数的计算,属于基础题.14、4【解题分析】
作出可行域如图所示:由,解得.目标函数,即为,平移斜率为-1的直线,经过点时,.15、1【解题分析】
由已知条件得出,可得,解之可得答案.【题目详解】向量的夹角为,且,,可得:,
可得,
解得,
故答案为:1.【题目点拨】本题考查根据向量的数量积运算求向量的模,关键在于将所求的向量的模平方,利用向量的数量积化简求解即可,属于基础题.16、【解题分析】
,所以有,再利用基本不等式求最值即可.【题目详解】由已知,,所以,当且仅当,即时,等号成立.故答案为:【题目点拨】本题考查利用基本不等式求和的最小值问题,采用的是“1”的替换,也可以消元等,是一道中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)答案见解析.(2)【解题分析】
(1)根据题意可得,在中,利用余弦定理可得,然后同理可得,利用面面垂直的判定定理即可求解.(2)以为原点建立直角坐标系,求出面的法向量为,的法向量为,利用空间向量的数量积即可求解.【题目详解】(1)由由因为是正四棱锥,故于是,由余弦定理,在中,设再用余弦定理,在中,∴是直角,同理,而在平面上,∴平面平面(2)以为原点建立直角坐标系,如图:则设面的法向量为,的法向量为则,取于是,二面角的余弦值为:【题目点拨】本题考查了面面垂直的判定定理、空间向量法求二面角,属于基础题.18、(Ⅰ),;(Ⅱ)1【解题分析】
(Ⅰ)易得为等比数列,再利用前项和与通项的关系求解的通项公式即可.(Ⅱ)由题可知要求的最小值,再分析的正负即可得随的增大而增大再判定可知即可.【题目详解】(Ⅰ)因为,故是以为首项,2为公比的等比数列,故.又当时,,解得.当时,…①…②①-②有,即.当时也满足.故为常数列,所以.即.故,(Ⅱ)因为对,恒成立.故只需求的最小值即可.设,则,又,又当时,时.当时,因为.故.综上可知.故随着的增大而增大,故,故【题目点拨】本题主要考查了根据数列的递推公式求解通项公式的方法,同时也考查了根据数列的增减性判断最值的问题,需要根据题意求解的通项,并根据二项式定理分析其正负,从而得到最小项.属于难题.19、(1)(2)见解析【解题分析】
(1)利用绝对值三角不等式求得的最大值.(2)由(1)得.方法一,利用柯西不等式证得不等式成立;方法二,利用“的代换”的方法,结合基本不等式证得不等式成立.【题目详解】(1)由绝对值不等式性质得当且仅当即时等号成立,所以(2)由(1)得.法1:由柯西不等式得当且仅当时等号成立,即,所以.法2:由得,,当且仅当时“=”成立.【题目点拨】本小题主要考查绝对值三角不等式,考查利用柯西不等式、基本不等式证明不等式,属于中档题.20、(1)见解析,有90%的把握认为“是否为业绩突出城市”与“选择网络外卖平台”有关.(2)①4.911②100万元.【解题分析】
(1)根据频率分布直方图与频率分布表,易得两个外卖平台中月订单不低于13万件的城市数量,即可完善列联表.通过计算的观测值,即可结合临界值作出判断.(2)①先根据所给数据求得样本平均值,根据所给今年3月订单数区间,并由及求得,.结合正态分布曲线性质可求得,再由二项分布的数学期望求法求解.②订单数低于7万件的城市有和两组,根据分层抽样的性质可确定各组抽取样本数.分别计算出开展营销活动与不开展营销活动的利润,比较即可得解.【题目详解】(1)对于外卖甲:月订单不低于13万件的城市数量为,对于外卖乙:月订单不低于13万件的城市数量为.由以上数据完善列联表如下图,业绩突出城市业绩不突出城市总计外卖甲4060100外卖乙5248100总计92108200且的观测值为,∴有90%的把握认为“是否为业绩突出城市”与“选择网络外卖平台”有关.(2)①样本平均数,故==,,的数学期望,②由分层抽样知,则100个城市中每月订单数在区间内的有(个),每月订单数在区间内的有(个),若不开展
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 泉州工程职业技术学院《过程控制专业实验》2023-2024学年第二学期期末试卷
- 泉州纺织服装职业学院《注册电气工程师概论》2023-2024学年第二学期期末试卷
- 上海科技大学《会计制度设计》2023-2024学年第二学期期末试卷
- 商丘师范学院《信息安全攻防对抗实训》2023-2024学年第二学期期末试卷
- 兴安职业技术学院《机器学习与人工智能导论》2023-2024学年第二学期期末试卷
- 3《植物妈妈有办法》教学设计-2024-2025学年统编版语文二年级上册
- 人教版七年级历史与社会下册6.4.2-高原圣城-拉萨教学设计
- 河池2025年广西河池市事业单位招聘731人笔试历年参考题库附带答案详解
- 7微生物与健康 教学设计 -2023-2024学年科学六年级上册教科版
- 扬州环境资源职业技术学院《田径教学与实践》2023-2024学年第二学期期末试卷
- 2023年设备检修标准化作业规范
- 光伏电站除草服务(合同)范本【详尽多条款】
- 2023年考核银行安全保卫人员真题与答案
- 储能全系统解决方案及产品手册
- (高清版)DZT 0309-2017 地质环境监测标志
- 人员转移安置实施方案(公司重组)
- 病历书写相关法律法规
- 老旧小区加装电梯方案
- 老年人误吸与预防-护理团标
- 输气场站工艺流程切换操作规程课件
- 青少年网络安全教育课件
评论
0/150
提交评论