版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省泰州市姜堰区高三综合题(三)数学试题(文史类)试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案种数是()A.18种 B.36种 C.54种 D.72种2.现有甲、乙、丙、丁4名学生平均分成两个志愿者小组到校外参加两项活动,则乙、丙两人恰好参加同一项活动的概率为A. B. C. D.3.函数的大致图像为()A. B.C. D.4.如图,四边形为平行四边形,为中点,为的三等分点(靠近)若,则的值为()A. B. C. D.5.已知为非零向量,“”为“”的()A.充分不必要条件 B.充分必要条件C.必要不充分条件 D.既不充分也不必要条件6.已知是等差数列的前项和,,,则()A.85 B. C.35 D.7.已知函数的部分图象如图所示,则()A. B. C. D.8.将一块边长为的正方形薄铁皮按如图(1)所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,将该容器按如图(2)放置,若其正视图为等腰直角三角形,且该容器的容积为,则的值为()A.6 B.8 C.10 D.129.已知复数,,则()A. B. C. D.10.已知函数,若,则的值等于()A. B. C. D.11.下列函数中,既是偶函数又在区间上单调递增的是()A. B. C. D.12.设f(x)是定义在R上的偶函数,且在(0,+∞)单调递减,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设变量,满足约束条件,则目标函数的最小值为______.14.展开式中的系数为_________.15.二项式的展开式中所有项的二项式系数之和是64,则展开式中的常数项为______.16.已知F为抛物线C:x2=8y的焦点,P为C上一点,M(﹣4,3),则△PMF周长的最小值是_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在四棱锥中,底面是边长为2的菱形,是的中点.(1)证明:平面;(2)设是线段上的动点,当点到平面距离最大时,求三棱锥的体积.18.(12分)已知函数与的图象关于直线对称.(为自然对数的底数)(1)若的图象在点处的切线经过点,求的值;(2)若不等式恒成立,求正整数的最小值.19.(12分)已知函数(,为自然对数的底数),.(1)若有两个零点,求实数的取值范围;(2)当时,对任意的恒成立,求实数的取值范围.20.(12分)是数列的前项和,且.(1)求数列的通项公式;(2)若,求数列中最小的项.21.(12分)在平面直角坐标系中,直线的倾斜角为,且经过点.以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,直线,从原点O作射线交于点M,点N为射线OM上的点,满足,记点N的轨迹为曲线C.(Ⅰ)求出直线的参数方程和曲线C的直角坐标方程;(Ⅱ)设直线与曲线C交于P,Q两点,求的值.22.(10分)如图所示,四棱柱中,底面为梯形,,,,,,.(1)求证:;(2)若平面平面,求二面角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
把4名大学生按人数分成3组,为1人、1人、2人,再把这三组分配到3个乡镇即得.【题目详解】把4名大学生按人数分成3组,为1人、1人、2人,再把这三组分配到3个乡镇,则不同的分配方案有种.故选:.【题目点拨】本题考查排列组合,属于基础题.2、B【解题分析】
求得基本事件的总数为,其中乙丙两人恰好参加同一项活动的基本事件个数为,利用古典概型及其概率的计算公式,即可求解.【题目详解】由题意,现有甲乙丙丁4名学生平均分成两个志愿者小组到校外参加两项活动,基本事件的总数为,其中乙丙两人恰好参加同一项活动的基本事件个数为,所以乙丙两人恰好参加同一项活动的概率为,故选B.【题目点拨】本题主要考查了排列组合的应用,以及古典概型及其概率的计算问题,其中解答中合理应用排列、组合的知识求得基本事件的总数和所求事件所包含的基本事件的个数,利用古典概型及其概率的计算公式求解是解答的关键,着重考查了运算与求解能力,属于基础题.3、D【解题分析】
通过取特殊值逐项排除即可得到正确结果.【题目详解】函数的定义域为,当时,,排除B和C;当时,,排除A.故选:D.【题目点拨】本题考查图象的判断,取特殊值排除选项是基本手段,属中档题.4、D【解题分析】
使用不同方法用表示出,结合平面向量的基本定理列出方程解出.【题目详解】解:,又解得,所以故选:D【题目点拨】本题考查了平面向量的基本定理及其意义,属于基础题.5、B【解题分析】
由数量积的定义可得,为实数,则由可得,根据共线的性质,可判断;再根据判断,由等价法即可判断两命题的关系.【题目详解】若成立,则,则向量与的方向相同,且,从而,所以;若,则向量与的方向相同,且,从而,所以.所以“”为“”的充分必要条件.故选:B【题目点拨】本题考查充分条件和必要条件的判定,考查相等向量的判定,考查向量的模、数量积的应用.6、B【解题分析】
将已知条件转化为的形式,求得,由此求得.【题目详解】设公差为,则,所以,,,.故选:B【题目点拨】本小题主要考查等差数列通项公式的基本量计算,考查等差数列前项和的计算,属于基础题.7、A【解题分析】
先利用最高点纵坐标求出A,再根据求出周期,再将代入求出φ的值.最后将代入解析式即可.【题目详解】由图象可知A=1,∵,所以T=π,∴.∴f(x)=sin(2x+φ),将代入得φ)=1,∴φ,结合0<φ,∴φ.∴.∴sin.故选:A.【题目点拨】本题考查三角函数的据图求式问题以及三角函数的公式变换.据图求式问题要注意结合五点法作图求解.属于中档题.8、D【解题分析】
推导出,且,,,设中点为,则平面,由此能表示出该容器的体积,从而求出参数的值.【题目详解】解:如图(4),为该四棱锥的正视图,由图(3)可知,,且,由为等腰直角三角形可知,,设中点为,则平面,∴,∴,解得.故选:D【题目点拨】本题考查三视图和锥体的体积计算公式的应用,属于中档题.9、B【解题分析】分析:利用的恒等式,将分子、分母同时乘以,化简整理得详解:,故选B点睛:复数问题是高考数学中的常考问题,属于得分题,主要考查的方面有:复数的分类、复数的几何意义、复数的模、共轭复数以及复数的乘除运算,在运算时注意符号的正、负问题.10、B【解题分析】
由函数的奇偶性可得,【题目详解】∵其中为奇函数,也为奇函数∴也为奇函数∴故选:B【题目点拨】函数奇偶性的运用即得结果,小记,定义域关于原点对称时有:①奇函数±奇函数=奇函数;②奇函数×奇函数=偶函数;③奇函数÷奇函数=偶函数;④偶函数±偶函数=偶函数;⑤偶函数×偶函数=偶函数;⑥奇函数×偶函数=奇函数;⑦奇函数÷偶函数=奇函数11、C【解题分析】
结合基本初等函数的奇偶性及单调性,结合各选项进行判断即可.【题目详解】A:为非奇非偶函数,不符合题意;B:在上不单调,不符合题意;C:为偶函数,且在上单调递增,符合题意;D:为非奇非偶函数,不符合题意.故选:C.【题目点拨】本小题主要考查函数的单调性和奇偶性,属于基础题.12、D【解题分析】
利用是偶函数化简,结合在区间上的单调性,比较出三者的大小关系.【题目详解】是偶函数,,而,因为在上递减,,即.故选:D【题目点拨】本小题主要考查利用函数的奇偶性和单调性比较大小,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、-8【解题分析】
通过约束条件,画出可行域,将问题转化为直线在轴截距最大的问题,通过图像解决.【题目详解】由题意可得可行域如下图所示:令,则即为在轴截距的最大值由图可知:当过时,在轴截距最大本题正确结果:【题目点拨】本题考查线性规划中的型最值的求解问题,关键在于将所求最值转化为在轴截距的问题.14、【解题分析】
变换,根据二项式定理计算得到答案.【题目详解】的展开式的通项为:,,取和,计算得到系数为:.故答案为:.【题目点拨】本题考查了二项式定理,意在考查学生的计算能力和应用能力.15、【解题分析】
由二项式系数性质求出,由二项展开式通项公式得出常数项的项数,从而得常数项.【题目详解】由题意,.展开式通项为,由得,∴常数项为.故答案为:.【题目点拨】本题考查二项式定理,考查二项式系数的性质,掌握二项展开式通项公式是解题关键.16、5【解题分析】
△PMF的周长最小,即求最小,过做抛物线准线的垂线,垂足为,转化为求最小,数形结合即可求解.【题目详解】如图,F为抛物线C:x2=8y的焦点,P为C上一点,M(﹣4,3),抛物线C:x2=8y的焦点为F(0,2),准线方程为y=﹣2.过作准线的垂线,垂足为,则有,当且仅当三点共线时,等号成立,所以△PMF的周长最小值为55.故答案为:5.【题目点拨】本题考查抛物线定义的应用,考查数形结合与数学转化思想方法,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解题分析】
(1)连接与交于,连接,证明即可得证线面平行;(2)首先证明平面(只要取中点,可证平面,从而得,同理得),因此点到直线的距离即为点到平面的距离,由平面几何知识易得最大值,然后可计算体积.【题目详解】(1)证明:连接与交于,连接,因为是菱形,所以为的中点,又因为为的中点,所以,因为平面平面,所以平面.(2)解:取中点,连接,因为四边形是菱形,,且,所以,又,所以平面,又平面,所以.同理可证:,又,所以平面,所以平面平面,又平面平面,所以点到直线的距离即为点到平面的距离,过作直线的垂线段,在所有垂线段中长度最大为,因为为的中点,故点到平面的最大距离为1,此时,为的中点,即,所以,所以.【题目点拨】本题考查证明线面平行,考查求棱锥的体积,掌握面面垂直与线面垂直的判定与性质是解题关键.18、(1)e;(2)2.【解题分析】
(1)根据反函数的性质,得出,再利用导数的几何意义,求出曲线在点处的切线为,构造函数,利用导数求出单调性,即可得出的值;(2)设,求导,求出的单调性,从而得出最大值为,结合恒成立的性质,得出正整数的最小值.【题目详解】(1)根据题意,与的图象关于直线对称,所以函数的图象与互为反函数,则,,设点,,又,当时,,曲线在点处的切线为,即,代入点,得,即,构造函数,当时,,当时,,且,当时,单调递增,而,故存在唯一的实数根.(2)由于不等式恒成立,可设,所以,令,得.所以当时,;当时,,因此函数在是增函数,在是减函数.故函数的最大值为.令,因为,,又因为在是减函数.所以当时,.所以正整数的最小值为2.【题目点拨】本题考查导数的几何意义和利用导数解决恒成立问题,涉及到单调性、构造函数法等,考查函数思想和计算能力.19、(1);(2)【解题分析】
(1)将有两个零点转化为方程有两个相异实根,令求导,利用其单调性和极值求解;(2)将问题转化为对一切恒成立,令,求导,研究单调性,求出其最值即可得结果.【题目详解】(1)有两个零点关于的方程有两个相异实根由,知有两个零点有两个相异实根.令,则,由得:,由得:,在单调递增,在单调递减,又当时,,当时,当时,有两个零点时,实数的取值范围为;(2)当时,,原命题等价于对一切恒成立对一切恒成立.令令,,则在上单增又,,使即①当时,,当时,,即在递减,在递增,由①知函数在单调递增即,实数的取值范围为.【题目点拨】本题考查利用导数研究函数的单调性,极值,最值问题,考查学生转化能力和分析能力,是一道难度较大的题目.20、(1);(2).【解题分析】
(1)由可得出,两式作差可求得数列的通项公式;(2)求得,利用数列的单调性的定义判断数列的单调性,由此可求得数列的最小项的值.【题目详解】(1)对任意的,由得,两式相减得,因此,数列的通项公式为;(2)由(1)得,则.当时,,即,;当时,,即,.所以,数列的最小项为.【题目点拨】本题考查利用与的关系求通项,同时也考查了利用数列的单调性求数列中的最小项,考查推理能力与计算能力,属于中等题.21、(Ⅰ)(t为参数),;(Ⅱ)1.【解题分析】
(Ⅰ)直接由已知写出直线l1的参数方程,设N(ρ,θ),M(ρ1,θ1),(ρ>0,ρ1>0),由题意可得,即ρ=4cosθ,然后化为普通方程;(Ⅱ)将l1的参数方程代入C的直角坐标方程中,得到关于t的一元二次方程,再由参数t的几何意义可得|AP|•|AQ|的值.【题目详解】(Ⅰ)直线l1的参数方程为,(t为参数)即(t为参数).设N(ρ,θ),M(ρ1,θ1),
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 牛蹄病诊疗案例分享
- 年产xx丙纶长丝项目建议书
- 锪钻项目可行性研究报告
- 复混草坪肥料项目招商计划书
- 胸腺退化不全的日常护理
- 大班社会活动教案《百家姓》
- 尿毒症患者护理查房
- 2023-2024学年六年级下学期数学第四单元总复习《图形与几何-直线平面图形的联系》(教案)
- 护理应急预案课件
- 小班社会教案及教学反思《虫虫飞》
- 先兆流产课件-课件
- 2020-2024年高考语文复习试题分类训练:大作文(学生卷)
- 《机械设计基础》期末考试试卷七
- 2018年广东深圳中考满分作文《我和深圳读书月的细节》
- 中层管理人员财务知识培训
- 大型养路机械司机(打磨车)高级工技能鉴定考试题库(含答案)
- 地理-湖南省长沙市(炎德英才大联考)长郡中学2025届高三上学期月考试卷(三)试题和答案
- 中级消防设施操作员模拟练习题与参考答案
- 广东省佛山市顺德区2024-2025学年高二上学期期中考试数学试题含答案
- 儿童EB病毒感染疾病的诊断指南和治疗原则
- 检验科生物安全工作总结
评论
0/150
提交评论