




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省晋中市重点中学2024届下学期高17级一部高三数学试题一模模拟(五)试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某人2018年的家庭总收人为元,各种用途占比如图中的折线图,年家庭总收入的各种用途占比统计如图中的条形图,已知年的就医费用比年的就医费用增加了元,则该人年的储畜费用为()A.元 B.元 C.元 D.元2.如图,在三棱锥中,平面,,现从该三棱锥的个表面中任选个,则选取的个表面互相垂直的概率为()A. B. C. D.3.已知函数f(x)=sin2x+sin2(x),则f(x)的最小值为()A. B. C. D.4.一个陶瓷圆盘的半径为,中间有一个边长为的正方形花纹,向盘中投入1000粒米后,发现落在正方形花纹上的米共有51粒,据此估计圆周率的值为(精确到0.001)()A.3.132 B.3.137 C.3.142 D.3.1475.已知复数满足,则()A. B.2 C.4 D.36.若双曲线的一条渐近线与圆至多有一个交点,则双曲线的离心率的取值范围是()A. B. C. D.7.已知数列满足,且成等比数列.若的前n项和为,则的最小值为()A. B. C. D.8.已知等差数列的前项和为,且,则()A.45 B.42 C.25 D.369.函数的部分图象如图所示,则的单调递增区间为()A. B.C. D.10.已知复数,则()A. B. C. D.211.《易·系辞上》有“河出图,洛出书”之说,河图、洛书是中华文化,阴阳术数之源,其中河图的排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中,如图,白圈为阳数,黑点为阴数,若从阴数和阳数中各取一数,则其差的绝对值为5的概率为A. B. C. D.12.已知正方体的棱长为2,点在线段上,且,平面经过点,则正方体被平面截得的截面面积为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设(其中为自然对数的底数),,若函数恰有4个不同的零点,则实数的取值范围为________.14.在的展开式中,的系数等于__.15.已知非零向量的夹角为,且,则______.16.已知为矩形的对角线的交点,现从这5个点中任选3个点,则这3个点不共线的概率为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知集合,集合,.(1)求集合B;(2)记,且集合M中有且仅有一个整数,求实数k的取值范围.18.(12分)已知函数.(1)若在上单调递增,求实数的取值范围;(2)若,对,恒有成立,求实数的最小值.19.(12分)2019年6月,国内的运营牌照开始发放.从到,我们国家的移动通信业务用了不到20年的时间,完成了技术上的飞跃,跻身世界先进水平.为了解高校学生对的消费意愿,2019年8月,从某地在校大学生中随机抽取了1000人进行调查,样本中各类用户分布情况如下:用户分类预计升级到的时段人数早期体验用户2019年8月至2019年12月270人中期跟随用户2020年1月至2021年12月530人后期用户2022年1月及以后200人我们将大学生升级时间的早晚与大学生愿意为套餐支付更多的费用作比较,可得出下图的关系(例如早期体验用户中愿意为套餐多支付5元的人数占所有早期体验用户的).(1)从该地高校大学生中随机抽取1人,估计该学生愿意在2021年或2021年之前升级到的概率;(2)从样本的早期体验用户和中期跟随用户中各随机抽取1人,以表示这2人中愿意为升级多支付10元或10元以上的人数,求的分布列和数学期望;(3)2019年底,从这1000人的样本中随机抽取3人,这三位学生都已签约套餐,能否认为样本中早期体验用户的人数有变化?说明理由.20.(12分)已知,均为正项数列,其前项和分别为,,且,,,当,时,,.(1)求数列,的通项公式;(2)设,求数列的前项和.21.(12分)已知半径为5的圆的圆心在x轴上,圆心的横坐标是整数,且与直线4x+3y﹣29=0相切.(1)求圆的方程;(2)设直线ax﹣y+5=0(a>0)与圆相交于A,B两点,求实数a的取值范围;(3)在(2)的条件下,是否存在实数a,使得弦AB的垂直平分线l过点P(﹣2,4),若存在,求出实数a的值;若不存在,请说明理由.22.(10分)在直角坐标系中,直线的参数方程为,(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程和曲线的直角坐标方程;(2)若点是直线的一点,过点作曲线的切线,切点为,求的最小值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】
根据2018年的家庭总收人为元,且就医费用占得到就医费用,再根据年的就医费用比年的就医费用增加了元,得到年的就医费用,然后由年的就医费用占总收人,得到2019年的家庭总收人再根据储畜费用占总收人求解.【题目详解】因为2018年的家庭总收人为元,且就医费用占所以就医费用因为年的就医费用比年的就医费用增加了元,所以年的就医费用元,而年的就医费用占总收人所以2019年的家庭总收人为而储畜费用占总收人所以储畜费用:故选:A【题目点拨】本题主要考查统计中的折线图和条形图的应用,还考查了建模解模的能力,属于基础题.2、A【解题分析】
根据线面垂直得面面垂直,已知平面,由,可得平面,这样可确定垂直平面的对数,再求出四个面中任选2个的方法数,从而可计算概率.【题目详解】由已知平面,,可得,从该三棱锥的个面中任选个面共有种不同的选法,而选取的个表面互相垂直的有种情况,故所求事件的概率为.故选:A.【题目点拨】本题考查古典概型概率,解题关键是求出基本事件的个数.3、A【解题分析】
先通过降幂公式和辅助角法将函数转化为,再求最值.【题目详解】已知函数f(x)=sin2x+sin2(x),=,=,因为,所以f(x)的最小值为.故选:A【题目点拨】本题主要考查倍角公式及两角和与差的三角函数的逆用,还考查了运算求解的能力,属于中档题.4、B【解题分析】
结合随机模拟概念和几何概型公式计算即可【题目详解】如图,由几何概型公式可知:.故选:B【题目点拨】本题考查随机模拟的概念和几何概型,属于基础题5、A【解题分析】
由复数除法求出,再由模的定义计算出模.【题目详解】.故选:A.【题目点拨】本题考查复数的除法法则,考查复数模的运算,属于基础题.6、C【解题分析】
求得双曲线的渐近线方程,可得圆心到渐近线的距离,由点到直线的距离公式可得的范围,再由离心率公式计算即可得到所求范围.【题目详解】双曲线的一条渐近线为,即,由题意知,直线与圆相切或相离,则,解得,因此,双曲线的离心率.故选:C.【题目点拨】本题考查双曲线的离心率的范围,注意运用圆心到渐近线的距离不小于半径,考查化简整理的运算能力,属于中档题.7、D【解题分析】
利用等比中项性质可得等差数列的首项,进而求得,再利用二次函数的性质,可得当或时,取到最小值.【题目详解】根据题意,可知为等差数列,公差,由成等比数列,可得,∴,解得.∴.根据单调性,可知当或时,取到最小值,最小值为.故选:D.【题目点拨】本题考查等差数列通项公式、等比中项性质、等差数列前项和的最值,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意当或时同时取到最值.8、D【解题分析】
由等差数列的性质可知,进而代入等差数列的前项和的公式即可.【题目详解】由题,.故选:D【题目点拨】本题考查等差数列的性质,考查等差数列的前项和.9、D【解题分析】
由图象可以求出周期,得到,根据图象过点可求,根据正弦型函数的性质求出单调增区间即可.【题目详解】由图象知,所以,,又图象过点,所以,故可取,所以令,解得所以函数的单调递增区间为故选:.【题目点拨】本题主要考查了三角函数的图象与性质,利用“五点法”求函数解析式,属于中档题.10、C【解题分析】
根据复数模的性质即可求解.【题目详解】,,故选:C【题目点拨】本题主要考查了复数模的性质,属于容易题.11、A【解题分析】
阳数:,阴数:,然后分析阴数和阳数差的绝对值为5的情况数,最后计算相应概率.【题目详解】因为阳数:,阴数:,所以从阴数和阳数中各取一数差的绝对值有:个,满足差的绝对值为5的有:共个,则.故选:A.【题目点拨】本题考查实际背景下古典概型的计算,难度一般.古典概型的概率计算公式:.12、B【解题分析】
先根据平面的基本性质确定平面,然后利用面面平行的性质定理,得到截面的形状再求解.【题目详解】如图所示:确定一个平面,因为平面平面,所以,同理,所以四边形是平行四边形.即正方体被平面截的截面.因为,所以,即所以由余弦定理得:所以所以四边形故选:B【题目点拨】本题主要考查平面的基本性质,面面平行的性质定理及截面面积的求法,还考查了空间想象和运算求解的能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
求函数,研究函数的单调性和极值,作出函数的图象,设,若函数恰有4个零点,则等价为函数有两个零点,满足或,利用一元二次函数根的分布进行求解即可.【题目详解】当时,,由得:,解得,由得:,解得,即当时,函数取得极大值,同时也是最大值,(e),当,,当,,作出函数的图象如图,设,由图象知,当或,方程有一个根,当或时,方程有2个根,当时,方程有3个根,则,等价为,当时,,若函数恰有4个零点,则等价为函数有两个零点,满足或,则,即(1)解得:,故答案为:【题目点拨】本题主要考查函数与方程的应用,利用换元法进行转化一元二次函数根的分布以及.求的导数,研究函数的的单调性和极值是解决本题的关键,属于难题.14、7【解题分析】
由题,得,令,即可得到本题答案.【题目详解】由题,得,令,得x的系数.故答案为:7【题目点拨】本题主要考查二项式定理的应用,属基础题.15、1【解题分析】
由已知条件得出,可得,解之可得答案.【题目详解】向量的夹角为,且,,可得:,
可得,
解得,
故答案为:1.【题目点拨】本题考查根据向量的数量积运算求向量的模,关键在于将所求的向量的模平方,利用向量的数量积化简求解即可,属于基础题.16、【解题分析】
基本事件总数,这3个点共线的情况有两种和,由此能求出这3个点不共线的概率.【题目详解】解:为矩形的对角线的交点,现从,,,,这5个点中任选3个点,基本事件总数,这3个点共线的情况有两种和,这3个点不共线的概率为.故答案为:.【题目点拨】本题考查概率的求法,考查对立事件概率计算公式等基础知识,考查运算求解能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】
(1)由不等式可得,讨论与的关系,即可得到结果;(2)先解得不等式,由集合M中有且仅有一个整数,当时,则M中仅有的整数为;当时,则M中仅有的整数为,进而求解即可.【题目详解】解:(1)因为,所以,当,即时,;当,即时,;当,即时,.(2)由得,当,即时,M中仅有的整数为,所以,即;当,即时,M中仅有的整数为,所以,即;综上,满足题意的k的范围为【题目点拨】本题考查解一元二次不等式,考查由交集的结果求参数范围,考查分类讨论思想与运算能力.18、(1)(2)【解题分析】
(1)求得,根据已知条件得到在恒成立,由此得到在恒成立,利用分离常数法求得的取值范围.(2)构造函数设,利用求二阶导数的方法,结合恒成立,求得的取值范围,由此求得的最小值.【题目详解】(1)因为在上单调递增,所以在恒成立,即在恒成立,当时,上式成立,当,有,需,而,,,,故综上,实数的取值范围是(2)设,,则,令,,在单调递增,也就是在单调递增,所以.当即时,,不符合;当即时,,符合当即时,根据零点存在定理,,使,有时,,在单调递减,时,,在单调递增,成立,故只需即可,有,得,符合综上得,,实数的最小值为【题目点拨】本小题主要考查利用导数研究函数的单调性,考查利用导数研究不等式恒成立问题,考查化归与转化的数学思想方法,考查分类讨论的数学思想方法,属于难题.19、(1)(2)详见解析(3)事件虽然发生概率小,但是发生可能性为0.02,所以认为早期体验用户没有发生变化,详见解析【解题分析】
(1)由从高校大学生中随机抽取1人,该学生在2021年或2021年之前升级到,结合古典摡型的概率计算公式,即可求解;(2)由题意的所有可能值为,利用相互独立事件的概率计算公式,分别求得相应的概率,得到随机变量的分布列,利用期望的公式,即可求解.(3)设事件为“从这1000人的样本中随机抽取3人,这三位学生都已签约套餐”,得到七概率为,即可得到结论.【题目详解】(1)由题意可知,从高校大学生中随机抽取1人,该学生在2021年或2021年之前升级到的概率估计为样本中早期体验用户和中期跟随用户的频率,即.(2)由题意的所有可能值为,记事件为“从早期体验用户中随机抽取1人,该学生愿意为升级多支付10元或10元以上”,事件为“从中期跟随用户中随机抽取1人,该学生愿意为升级多支付10元或10元以上”,由题意可知,事件,相互独立,且,,所以,,,所以的分布列为0120.180.490.33故的数学期望.(3)设事件为“从这1000人的样本中随机抽取3人,这三位学生都已签约套餐”,那么.回答一:事件虽然发生概率小,但是发生可能性为0.02,所以认为早期体验用户没有发生变化.回答二:事件发生概率小,所以可以认为早期体验用户人数增加.【题目点拨】本题主要考查了离散型随机变量的分布列,数学期望的求解及应用,对于求离散型随机变量概率分布列问题首先要清楚离散型随机变量的可能取值,计算得出概率,列出离散型随机变量概率分布列,最后按照数学期望公式计算出数学期望,其中列出离散型随机变量概率分布列及计算数学期望是理科高考数学必考问题.20、(1),(2)【解题分析】
(1),所,两式相减,即可得到数列递推关系求解通项公式,由,整理得,得到,即可求解通项公式;(2)由(1)可知,,即可求得数列的前项和.【题目详解】(1)因为,所,两式相减,整理得,当时,,解得,所以数列是首项和公比均为的等比数列,即,因为,整理得,又因为,所以,所以,即,因为,所以数列是以首项和公差均为1的等差数列,所以;(2)由(1)可知,,,即.【题目点拨】此题考查求数列的通项公式,以及数列求和,关键在于对题中所给关系合理变形,发现其中的关系,裂项求和作为一类常用的求和方法,需要在平常的学习中多做积累常见的裂项方式.21、(2)(x﹣2)2+y2=2.(2)().(3)存在,【解题分析】
(2)设圆心为M(m,0),根据相切得到,计算得到答案.(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年农作物繁育员行业数据分析试题及答案
- 2024年农业植保员考试的攻略与试题解析
- 2024年体育经纪人考试的重点难点试题及答案
- 2024年体育经纪人考试的胜出之道试题及答案
- 2024年体育经纪人考试新鲜出炉的试题及答案
- 证券投资组合的动态调整技巧在2025年考试中的运用试题及答案
- 农业植保员考试2024年实战演练与试题解析
- 深度剖析2024年模具设计师资格考试的特点试题及答案
- 游泳救生员救生常识能力评估试题及答案
- 2024年足球裁判员应知的法规及试题与答案
- 工程量确认单表样
- 胃肠外科考试试题及答案
- 劳动争议调解仲裁法解析
- 海因环氧树脂的制备及其应用
- 罗甸县从里水库管道输水工程施工方案
- 数字化语音存储与回放系统(毕业设计)
- 造林典型设计
- 肾脏内科疾病诊疗指南
- 一般现在时和现在进行时练习题
- CPK原始数据自动生成2018
- 压力管道安装质量证明书及汇总表最新
评论
0/150
提交评论