山西省怀仁县第八中学2024届高三月考(八)数学试题试卷_第1页
山西省怀仁县第八中学2024届高三月考(八)数学试题试卷_第2页
山西省怀仁县第八中学2024届高三月考(八)数学试题试卷_第3页
山西省怀仁县第八中学2024届高三月考(八)数学试题试卷_第4页
山西省怀仁县第八中学2024届高三月考(八)数学试题试卷_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省怀仁县第八中学2024届高三月考(八)数学试题试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.数列{an}是等差数列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,则实数λ的最大值为()A. B. C. D.2.已知为实数集,,,则()A. B. C. D.3.某几何体的三视图如图所示,则该几何体的最长棱的长为()A. B. C. D.4.已知函数,将函数的图象向左平移个单位长度后,所得到的图象关于轴对称,则的最小值是()A. B. C. D.5.已知集合,,则A. B.C. D.6.已知集合,,若AB,则实数的取值范围是()A. B. C. D.7.若的二项展开式中的系数是40,则正整数的值为()A.4 B.5 C.6 D.78.以下关于的命题,正确的是A.函数在区间上单调递增B.直线需是函数图象的一条对称轴C.点是函数图象的一个对称中心D.将函数图象向左平移需个单位,可得到的图象9.运行如图所示的程序框图,若输出的值为300,则判断框中可以填()A. B. C. D.10.已知向量,满足||=1,||=2,且与的夹角为120°,则=()A. B. C. D.11.下列几何体的三视图中,恰好有两个视图相同的几何体是()A.正方体 B.球体C.圆锥 D.长宽高互不相等的长方体12.已知、分别是双曲线的左、右焦点,过作双曲线的一条渐近线的垂线,分别交两条渐近线于点、,过点作轴的垂线,垂足恰为,则双曲线的离心率为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设f(x)=etx(t>0),过点P(t,0)且平行于y轴的直线与曲线C:y=f(x)的交点为Q,曲线C过点Q的切线交x轴于点R,若S(1,f(1)),则△PRS的面积的最小值是_____.14.已知椭圆的左右焦点分别为,过且斜率为的直线交椭圆于,若三角形的面积等于,则该椭圆的离心率为________.15.在中,、的坐标分别为,,且满足,为坐标原点,若点的坐标为,则的取值范围为__________.16.角α的顶点在坐标原点,始边与x轴的非负半轴重合,终边经过点P(1,2),则sin(π﹣α)的值是_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)讨论的单调性并指出相应单调区间;(2)若,设是函数的两个极值点,若,且恒成立,求实数k的取值范围.18.(12分)已知实数x,y,z满足,证明:.19.(12分)已知函数.(1)若曲线存在与轴垂直的切线,求的取值范围.(2)当时,证明:.20.(12分)已知函数.(Ⅰ)若是第二象限角,且,求的值;(Ⅱ)求函数的定义域和值域.21.(12分)已知函数(I)若讨论的单调性;(Ⅱ)若,且对于函数的图象上两点,存在,使得函数的图象在处的切线.求证:.22.(10分)已知函数.(Ⅰ)若,求曲线在处的切线方程;(Ⅱ)当时,要使恒成立,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】

利用等差数列通项公式推导出λ,由d∈[1,2],能求出实数λ取最大值.【题目详解】∵数列{an}是等差数列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,∴1+3d+λ(1+9d)+1+15d=15,解得λ,∵d∈[1,2],λ2是减函数,∴d=1时,实数λ取最大值为λ.故选D.【题目点拨】本题考查实数值的最大值的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.2、C【解题分析】

求出集合,,,由此能求出.【题目详解】为实数集,,,或,.故选:.【题目点拨】本题考查交集、补集的求法,考查交集、补集的性质等基础知识,考查运算求解能力,是基础题.3、D【解题分析】

先根据三视图还原几何体是一个四棱锥,根据三视图的数据,计算各棱的长度.【题目详解】根据三视图可知,几何体是一个四棱锥,如图所示:由三视图知:,所以,所以,所以该几何体的最长棱的长为故选:D【题目点拨】本题主要考查三视图的应用,还考查了空间想象和运算求解的能力,属于中档题.4、A【解题分析】

化简为,求出它的图象向左平移个单位长度后的图象的函数表达式,利用所得到的图象关于轴对称列方程即可求得,问题得解。【题目详解】函数可化为:,将函数的图象向左平移个单位长度后,得到函数的图象,又所得到的图象关于轴对称,所以,解得:,即:,又,所以.故选:A.【题目点拨】本题主要考查了两角和的正弦公式及三角函数图象的平移、性质等知识,考查转化能力,属于中档题。5、D【解题分析】

因为,,所以,,故选D.6、D【解题分析】

先化简,再根据,且AB求解.【题目详解】因为,又因为,且AB,所以.故选:D【题目点拨】本题主要考查集合的基本运算,还考查了运算求解的能力,属于基础题.7、B【解题分析】

先化简的二项展开式中第项,然后直接求解即可【题目详解】的二项展开式中第项.令,则,∴,∴(舍)或.【题目点拨】本题考查二项展开式问题,属于基础题8、D【解题分析】

利用辅助角公式化简函数得到,再逐项判断正误得到答案.【题目详解】A选项,函数先增后减,错误B选项,不是函数对称轴,错误C选项,,不是对称中心,错误D选项,图象向左平移需个单位得到,正确故答案选D【题目点拨】本题考查了三角函数的单调性,对称轴,对称中心,平移,意在考查学生对于三角函数性质的综合应用,其中化简三角函数是解题的关键.9、B【解题分析】

由,则输出为300,即可得出判断框的答案【题目详解】由,则输出的值为300,,故判断框中应填?故选:.【题目点拨】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.10、D【解题分析】

先计算,然后将进行平方,,可得结果.【题目详解】由题意可得:∴∴则.故选:D.【题目点拨】本题考查的是向量的数量积的运算和模的计算,属基础题。11、C【解题分析】

根据基本几何体的三视图确定.【题目详解】正方体的三个三视图都是相等的正方形,球的三个三视图都是相等的圆,圆锥的三个三视图有一个是圆,另外两个是全等的等腰三角形,长宽高互不相等的长方体的三视图是三个两两不全等的矩形.故选:C.【题目点拨】本题考查基本几何体的三视图,掌握基本几何体的三视图是解题关键.12、B【解题分析】

设点位于第二象限,可求得点的坐标,再由直线与直线垂直,转化为两直线斜率之积为可得出的值,进而可求得双曲线的离心率.【题目详解】设点位于第二象限,由于轴,则点的横坐标为,纵坐标为,即点,由题意可知,直线与直线垂直,,,因此,双曲线的离心率为.故选:B.【题目点拨】本题考查双曲线离心率的计算,解答的关键就是得出、、的等量关系,考查计算能力,属于中等题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

计算R(t,0),PR=t﹣(t),△PRS的面积为S,导数S′,由S′=0得t=1,根据函数的单调性得到最值.【题目详解】∵PQ∥y轴,P(t,0),∴Q(t,f(t))即Q(t,),又f(x)=etx(t>0)的导数f′(x)=tetx,∴过Q的切线斜率k=t,设R(r,0),则k,∴r=t,即R(t,0),PR=t﹣(t),又S(1,f(1))即S(1,et),∴△PRS的面积为S,导数S′,由S′=0得t=1,当t>1时,S′>0,当0<t<1时,S′<0,∴t=1为极小值点,也为最小值点,∴△PRS的面积的最小值为.故答案为:.【题目点拨】本题考查了利用导数求面积的最值问题,意在考查学生的计算能力和应用能力.14、【解题分析】

由题得直线的方程为,代入椭圆方程得:,设点,则有,由,且解出,进而求解出离心率.【题目详解】由题知,直线的方程为,代入消得:,设点,则有,,而,又,解得:,所以离心率.故答案为:【题目点拨】本题主要考查了直线与椭圆的位置关系,三角形面积计算与离心率的求解,考查了学生的运算求解能力15、【解题分析】

由正弦定理可得点在曲线上,设,则,将代入可得,利用二次函数的性质可得范围.【题目详解】解:由正弦定理得,则点在曲线上,设,则,,又,,因为,则,即的取值范围为.故答案为:.【题目点拨】本题考查双曲线的定义,考查向量数量积的坐标运算,考查学生计算能力,有一定的综合性,但难度不大.16、【解题分析】

计算sinα,再利用诱导公式计算得到答案.【题目详解】由题意可得x=1,y=2,r,∴sinα,∴sin(π﹣α)=sinα.故答案为:.【题目点拨】本题考查了三角函数定义,诱导公式,意在考查学生的计算能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)答案见解析(2)【解题分析】

(1)先对函数进行求导得,对分成和两种情况讨论,从而得到相应的单调区间;(2)对函数求导得,从而有,,,三个方程中利用得到.将不等式的左边转化成关于的函数,再构造新函数利用导数研究函数的最小值,从而得到的取值范围.【题目详解】解:(1)由,,则,当时,则,故在上单调递减;当时,令,所以在上单调递减,在上单调递增.综上所述:当时,在上单调递减;当时,在上单调递减,在上单调递增.(2)∵,,由得,∴,,∴∵∴解得.∴.设,则,∴在上单调递减;当时,.∴,即所求的取值范围为.【题目点拨】本题考查利用导数研究函数的单调性、最值,考查分类讨论思想和数形结合思想,求解双元问题的常用思路是:通过换元或消元,将双元问题转化为单元问题,然后利用导数研究单变量函数的性质.18、见解析【解题分析】

已知条件,需要证明的是,要想利用柯西不等式,需要的值,发现,则可以用柯西不等式.【题目详解】,.由柯西不等式得,...【题目点拨】本题考查柯西不等式的应用,属于基础题.19、(1)(2)证明见解析【解题分析】

(1)在上有解,,设,求导根据函数的单调性得到最值,得到答案.(2)证明,只需证,记,求导得到函数的单调性,得到函数的最小值,得到证明.【题目详解】(1)由题可得,在上有解,则,令,,当时,单调递增;当时,单调递减.所以是的最大值点,所以.(2)由,所以,要证明,只需证,即证.记在上单调递增,且,当时,单调递减;当时,单调递增.所以是的最小值点,,则,故.【题目点拨】本题考查了函数的切线问题,证明不等式,意在考查学生的综合应用能力和转化能力.20、(Ⅰ)(Ⅱ)函数的定义域为,值域为【解题分析】

(1)由为第二象限角及的值,利用同角三角函数间的基本关系求出及的值,再代入中即可得到结果.(2)函数解析式利用二倍角和辅助角公式将化为一个角的正弦函数,根据的范围,即可得到函数值域.【题目详解】解:(1)因为是第二象限角,且,所以.所以,所以.(2)函数的定义域为.化简,得,因为,且,,所以,所以.所以函数的值域为.(注:或许有人会认为“因为,所以”,其实不然,因为.)【题目点拨】本题考查同角三角函数的基本关系式,三角函数函数值求解以及定义域和值域的求解问题,涉及到利用二倍角公式和辅助角公式整理三角函数关系式的问题,意在考查学生的转化能力和计算求解能力,属于常考题型.21、(1)见解析(2)见证明【解题分析】

(1)对函数求导,分别讨论,以及,即可得出结果;(2)根据题意,由导数几何意义得到,将证明转化为证明即可,再令,设,用导数方法判断出的单调性,进而可得出结论成立.【题目详解】(1)解:易得,函数的定义域为,,令,得或.①当时,时,,函数单调递减;时,,函数单调递增.此时,的减区间为,增区间为.②当时,时,,函数单调递减;或时,,函数单调递增.此时,的减区间为,增区间为,.③当时,时,,函数单调递增;此时,的减区间为.综上,当时,的减区间为,增区间为:当时,的减区间为,增区间为.;当时,增区间为.(2)证明:由题意及导数的几何意义,得由(1)中得.易知,导函数在上为增函数,所以,要证,只要证,即,即证.因为,不妨令,则.所以,所以在上为增函数,所以,即,所以,即,即.故有(得证).【题目点拨】本题主要考查导数的应用,通常需要对函数求导,利用导数的方法研究函数的单调性以

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论