江津中学2024届高考押题卷(数学试题)试卷解析_第1页
江津中学2024届高考押题卷(数学试题)试卷解析_第2页
江津中学2024届高考押题卷(数学试题)试卷解析_第3页
江津中学2024届高考押题卷(数学试题)试卷解析_第4页
江津中学2024届高考押题卷(数学试题)试卷解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江津中学2024届高考押题卷(数学试题)试卷解析注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知是虚数单位,则复数()A. B. C.2 D.2.正方体,是棱的中点,在任意两个中点的连线中,与平面平行的直线有几条()A.36 B.21 C.12 D.63.已知函数,为图象的对称中心,若图象上相邻两个极值点,满足,则下列区间中存在极值点的是()A. B. C. D.4.已知数列的通项公式为,将这个数列中的项摆放成如图所示的数阵.记为数阵从左至右的列,从上到下的行共个数的和,则数列的前2020项和为()A. B. C. D.5.一辆邮车从地往地运送邮件,沿途共有地,依次记为,,…(为地,为地).从地出发时,装上发往后面地的邮件各1件,到达后面各地后卸下前面各地发往该地的邮件,同时装上该地发往后面各地的邮件各1件,记该邮车到达,,…各地装卸完毕后剩余的邮件数记为.则的表达式为().A. B. C. D.6.点为的三条中线的交点,且,,则的值为()A. B. C. D.7.已知,椭圆的方程,双曲线的方程为,和的离心率之积为,则的渐近线方程为()A. B. C. D.8.已知.给出下列判断:①若,且,则;②存在使得的图象向右平移个单位长度后得到的图象关于轴对称;③若在上恰有7个零点,则的取值范围为;④若在上单调递增,则的取值范围为.其中,判断正确的个数为()A.1 B.2 C.3 D.49.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值,这就是著名的“徽率”。如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的值为()(参考数据:)A.48 B.36 C.24 D.1210.“是函数在区间内单调递增”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件11.已知函数是定义在上的奇函数,函数满足,且时,,则()A.2 B. C.1 D.12.如图所示程序框图,若判断框内为“”,则输出()A.2 B.10 C.34 D.98二、填空题:本题共4小题,每小题5分,共20分。13.已知函数为奇函数,则______.14.已知过点的直线与函数的图象交于、两点,点在线段上,过作轴的平行线交函数的图象于点,当∥轴,点的横坐标是15.已知实数,且由的最大值是_________16.将2个相同的红球和2个相同的黑球全部放入甲、乙、丙、丁四个盒子里,其中甲、乙盒子均最多可放入2个球,丙、丁盒子均最多可放入1个球,且不同颜色的球不能放入同一个盒子里,共有________种不同的放法.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在三棱柱中,平面ABC.(1)证明:平面平面(2)求二面角的余弦值.18.(12分)为了实现中华民族伟大复兴之梦,把我国建设成为富强民主文明和谐美丽的社会主义现代化强国,党和国家为劳动者开拓了宽广的创造性劳动的舞台.借此“东风”,某大型现代化农场在种植某种大棚有机无公害的蔬菜时,为创造更大价值,提高亩产量,积极开展技术创新活动.该农场采用了延长光照时间和降低夜间温度两种不同方案.为比较两种方案下产量的区别,该农场选取了40间大棚(每间一亩),分成两组,每组20间进行试点.第一组采用延长光照时间的方案,第二组采用降低夜间温度的方案.同时种植该蔬菜一季,得到各间大棚产量数据信息如下图:(1)如果你是该农场的负责人,在只考虑亩产量的情况下,请根据图中的数据信息,对于下一季大棚蔬菜的种植,说出你的决策方案并说明理由;(2)已知种植该蔬菜每年固定的成本为6千元/亩.若采用延长光照时间的方案,光照设备每年的成本为0.22千元/亩;若采用夜间降温的方案,降温设备的每年成本为0.2千元/亩.已知该农场共有大棚100间(每间1亩),农场种植的该蔬菜每年产出两次,且该蔬菜市场的收购均价为1千元/千斤.根据题中所给数据,用样本估计总体,请计算在两种不同的方案下,种植该蔬菜一年的平均利润;(3)农场根据以往该蔬菜的种植经验,认为一间大棚亩产量超过5.25千斤为增产明显.在进行夜间降温试点的20间大棚中随机抽取3间,记增产明显的大棚间数为,求的分布列及期望.19.(12分)2019年6月,国内的运营牌照开始发放.从到,我们国家的移动通信业务用了不到20年的时间,完成了技术上的飞跃,跻身世界先进水平.为了解高校学生对的消费意愿,2019年8月,从某地在校大学生中随机抽取了1000人进行调查,样本中各类用户分布情况如下:用户分类预计升级到的时段人数早期体验用户2019年8月至2019年12月270人中期跟随用户2020年1月至2021年12月530人后期用户2022年1月及以后200人我们将大学生升级时间的早晚与大学生愿意为套餐支付更多的费用作比较,可得出下图的关系(例如早期体验用户中愿意为套餐多支付5元的人数占所有早期体验用户的).(1)从该地高校大学生中随机抽取1人,估计该学生愿意在2021年或2021年之前升级到的概率;(2)从样本的早期体验用户和中期跟随用户中各随机抽取1人,以表示这2人中愿意为升级多支付10元或10元以上的人数,求的分布列和数学期望;(3)2019年底,从这1000人的样本中随机抽取3人,这三位学生都已签约套餐,能否认为样本中早期体验用户的人数有变化?说明理由.20.(12分)在直角坐标系中,曲线的参数方程为(为参数),坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程和曲线的直角坐标方程;(2)若曲线、交于、两点,是曲线上的动点,求面积的最大值.21.(12分)在中,角、、所对的边分别为、、,且.(1)求角的大小;(2)若,的面积为,求及的值.22.(10分)已知数列的前项和为,且满足().(1)求数列的通项公式;(2)设(),数列的前项和.若对恒成立,求实数,的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】

根据复数的基本运算求解即可.【题目详解】.故选:A【题目点拨】本题主要考查了复数的基本运算,属于基础题.2、B【解题分析】

先找到与平面平行的平面,利用面面平行的定义即可得到.【题目详解】考虑与平面平行的平面,平面,平面,共有,故选:B.【题目点拨】本题考查线面平行的判定定理以及面面平行的定义,涉及到了简单的组合问题,是一中档题.3、A【解题分析】

结合已知可知,可求,进而可求,代入,结合,可求,即可判断.【题目详解】图象上相邻两个极值点,满足,即,,,且,,,,,,当时,为函数的一个极小值点,而.故选:.【题目点拨】本题主要考查了正弦函数的图象及性质的简单应用,解题的关键是性质的灵活应用.4、D【解题分析】

由题意,设每一行的和为,可得,继而可求解,表示,裂项相消即可求解.【题目详解】由题意,设每一行的和为故因此:故故选:D【题目点拨】本题考查了等差数列型数阵的求和,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.5、D【解题分析】

根据题意,分析该邮车到第站时,一共装上的邮件和卸下的邮件数目,进而计算可得答案.【题目详解】解:根据题意,该邮车到第站时,一共装上了件邮件,需要卸下件邮件,则,故选:D.【题目点拨】本题主要考查数列递推公式的应用,属于中档题.6、B【解题分析】

可画出图形,根据条件可得,从而可解出,然后根据,进行数量积的运算即可求出.【题目详解】如图:点为的三条中线的交点,由可得:,又因,,.故选:B【题目点拨】本题考查三角形重心的定义及性质,向量加法的平行四边形法则,向量加法、减法和数乘的几何意义,向量的数乘运算及向量的数量积的运算,考查运算求解能力,属于中档题.7、A【解题分析】

根据椭圆与双曲线离心率的表示形式,结合和的离心率之积为,即可得的关系,进而得双曲线的离心率方程.【题目详解】椭圆的方程,双曲线的方程为,则椭圆离心率,双曲线的离心率,由和的离心率之积为,即,解得,所以渐近线方程为,化简可得,故选:A.【题目点拨】本题考查了椭圆与双曲线简单几何性质应用,椭圆与双曲线离心率表示形式,双曲线渐近线方程求法,属于基础题.8、B【解题分析】

对函数化简可得,进而结合三角函数的最值、周期性、单调性、零点、对称性及平移变换,对四个命题逐个分析,可选出答案.【题目详解】因为,所以周期.对于①,因为,所以,即,故①错误;对于②,函数的图象向右平移个单位长度后得到的函数为,其图象关于轴对称,则,解得,故对任意整数,,所以②错误;对于③,令,可得,则,因为,所以在上第1个零点,且,所以第7个零点,若存在第8个零点,则,所以,即,解得,故③正确;对于④,因为,且,所以,解得,又,所以,故④正确.故选:B.【题目点拨】本题考查三角函数的恒等变换,考查三角函数的平移变换、最值、周期性、单调性、零点、对称性,考查学生的计算求解能力与推理能力,属于中档题.9、C【解题分析】

由开始,按照框图,依次求出s,进行判断。【题目详解】,故选C.【题目点拨】框图问题,依据框图结构,依次准确求出数值,进行判断,是解题关键。10、C【解题分析】,令解得当,的图像如下图当,的图像如下图由上两图可知,是充要条件【考点定位】考查充分条件和必要条件的概念,以及函数图像的画法.11、D【解题分析】

说明函数是周期函数,由周期性把自变量的值变小,再结合奇偶性计算函数值.【题目详解】由知函数的周期为4,又是奇函数,,又,∴,∴.故选:D.【题目点拨】本题考查函数的奇偶性与周期性,掌握周期性与奇偶性的概念是解题基础.12、C【解题分析】

由题意,逐步分析循环中各变量的值的变化情况,即可得解.【题目详解】由题意运行程序可得:,,,;,,,;,,,;不成立,此时输出.故选:C.【题目点拨】本题考查了程序框图,只需在理解程序框图的前提下细心计算即可,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

利用奇函数的定义得出,结合对数的运算性质可求得实数的值.【题目详解】由于函数为奇函数,则,即,,整理得,解得.当时,真数,不合乎题意;当时,,解不等式,解得或,此时函数的定义域为,定义域关于原点对称,合乎题意.综上所述,.故答案为:.【题目点拨】本题考查利用函数的奇偶性求参数,考查了函数奇偶性的定义和对数运算性质的应用,考查计算能力,属于中等题.14、【解题分析】

通过设出A点坐标,可得C点坐标,通过∥轴,可得B点坐标,于是再利用可得答案.【题目详解】根据题意,可设点,则,由于∥轴,故,代入,可得,即,由于在线段上,故,即,解得.15、【解题分析】

将其转化为几何意义,然后根据最值的条件求出最大值【题目详解】由化简得,又实数,图形为圆,如图:,可得,则由几何意义得,则,为求最大值则当过点或点时取最小值,可得所以的最大值是【题目点拨】本题考查了二元最值问题,将其转化为几何意义,得到圆的方程及斜率问题,对要求的二元二次表达式进行化简,然后求出最值问题,本题有一定难度。16、【解题分析】

讨论装球盒子的个数,计算得到答案.【题目详解】当四个盒子有球时:种;当三个盒子有球时:种;当两个盒子有球时:种.故共有种,故答案为:.【题目点拨】本题考查了排列组合的综合应用,意在考查学生的理解能力和应用能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解题分析】

(1)证明平面即平面平面得证;(2)分别以所在直线为x轴,y轴.轴,建立如图所示的空间直角坐标系C-xyz,再利用向量方法求二面角的余弦值.【题目详解】(1)证明:因为平面ABC,所以因为.所以.即又.所以平面因为平面.所以平面平面(2)解:由题可得两两垂直,所以分别以所在直线为x轴,y轴.轴,建立如图所示的空间直角坐标系C-xyz,则,所以设平面的一个法向量为,由.得令,得又平面,所以平面的一个法向量为.所以二面角的余弦值为.【题目点拨】本题主要考查空间几何位置关系的证明,考查二面角的计算,意在考查学生对这些知识的理解掌握水平.18、(1)见解析;(2)(i)该农场若采用延长光照时间的方法,预计每年的利润为426千元;(ii)若采用降低夜间温度的方法,预计每年的利润为424千元;(3)分布列见解析,.【解题分析】

(1)估计第一组数据平均数和第二组数据平均数来选择.(2)对于两种方法,先计算出每亩平均产量,再算农场一年的利润.(3)估计频率分布直方图可知,增产明显的大棚间数为5间,由题意可知,的可能取值有0,1,2,3,再算出相应的概率,写出分布列,再求期望.【题目详解】(1)第一组数据平均数为千斤/亩,第二组数据平均数为千斤/亩,可知第一组方法较好,所以采用延长光照时间的方法;((2)(i)对于采用延长光照时间的方法:每亩平均产量为千斤.∴该农场一年的利润为千元.(ii)对于采用降低夜间温度的方法:每亩平均产量为千斤,∴该农场一年的利润为千元.因此,该农场若采用延长光照时间的方法,预计每年的利润为426千元;若采用降低夜间温度的方法,预计每年的利润为424千元.(3)由图可知,增产明显的大棚间数为5间,由题意可知,的可能取值有0,1,2,3,;;;.所以的分布列为0123所以.【题目点拨】本题主要考查样本估计总体和离散型随机变量的分布列,还考查了数据处理和运算求解的能力,属于中档题.19、(1)(2)详见解析(3)事件虽然发生概率小,但是发生可能性为0.02,所以认为早期体验用户没有发生变化,详见解析【解题分析】

(1)由从高校大学生中随机抽取1人,该学生在2021年或2021年之前升级到,结合古典摡型的概率计算公式,即可求解;(2)由题意的所有可能值为,利用相互独立事件的概率计算公式,分别求得相应的概率,得到随机变量的分布列,利用期望的公式,即可求解.(3)设事件为“从这1000人的样本中随机抽取3人,这三位学生都已签约套餐”,得到七概率为,即可得到结论.【题目详解】(1)由题意可知,从高校大学生中随机抽取1人,该学生在2021年或2021年之前升级到的概率估计为样本中早期体验用户和中期跟随用户的频率,即.(2)由题意的所有可能值为,记事件为“从早期体验用户中随机抽取1人,该学生愿意为升级多支付10元或10元以上”,事件为“从中期跟随用户中随机抽取1人,该学生愿意为升级多支付10元或10元以上”,由题意可知,事件,相互独立,且,,所以,,,所以的分布列为0120.180.490.33故的数学期望.(3)设事件为“从这1000人的样本中随机抽取3人,这三位学生都已签约套餐”,那么.回答一:事件虽然发生概率小,但是发生可能性为0.02,所以认为早期体验用户没有发生变化.回答二:事件发生概率小,所以可以认为早期体验用户人数增加.【题目点拨】本题主要考查了离散型随机变量的分布列,数学期望的求解及应用,对于求离散型随机变量概率分布列问题首先要清楚离散型随机变量的可能取值,计算得出概率,列出离散型随机变量概率分布列,最后按照数学期望公式计算出数学期望,其中列出离散型随机变量概率分布列及计算数学期望是理科高考数学必考问题.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论