河北省石家庄四十二中学2024届八上数学期末经典模拟试题含解析_第1页
河北省石家庄四十二中学2024届八上数学期末经典模拟试题含解析_第2页
河北省石家庄四十二中学2024届八上数学期末经典模拟试题含解析_第3页
河北省石家庄四十二中学2024届八上数学期末经典模拟试题含解析_第4页
河北省石家庄四十二中学2024届八上数学期末经典模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省石家庄四十二中学2024届八上数学期末经典模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,把剪成三部分,边,,放在同一直线上,点都落在直线上,直线.在中,若,则的度数为()A. B. C. D.2.如图,中,,,,则等于()A. B. C. D.3.某市一周空气质量报告某项污染指数的数据是:1,35,1,33,30,33,1.则对于这列数据表述正确的是()A.众数是30 B.中位数是1 C.平均数是33 D.极差是354.如图,在中,,,,点到的距离是()A. B. C. D.5.长度分别为,,的三条线段能组成一个三角形,的值可以是()A. B. C. D.6.已知分式的值为0,那么x的值是()A.﹣1 B.﹣2 C.1 D.1或﹣27.如图,,,则等于()A. B. C. D.8.如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为()A.2.8 B. C.2.4 D.3.59.下列根式合并过程正确的是()A. B. C. D.10.以下列各组线段的长为边,能组成三角形的是()A.2、4、7 B.3、5、2 C.7、7、3 D.9、5、3二、填空题(每小题3分,共24分)11.如图,已知方格纸中是4个相同的小正方形,则的度数为______.12.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为_______.13.某住宅小区有一块草坪如图所示,已知AB=6米,BC=8米,CD=24米,DA=26米,且AB⊥BC,则这块草坪的面积是________平方米.14.某同学在解关于的分式方程去分母时,由于常数6漏乘了公分母,最后解得.是该同学去分母后得到的整式方程__________的解,据此可求得__________,原分式方程的解为__________.15.若最简二次根式与是同类二次根式,则a的值为________.16.甲、乙两人骑自行车匀速同向行驶,乙在甲前面100米处,同时出发去距离甲1300米的目的地,其中甲的速度比乙的速度快.设甲、乙之间的距离为米,乙行驶的时间为秒,与之间的关系如图所示,则甲的速度为每秒___________米.17.如图,在□ABCD中,BE平分∠ABC,BC=6,DE=2,则□ABCD的周长等于__________.18.若等腰三角形的顶角为,则它腰上的高与底边的夹角是________度.三、解答题(共66分)19.(10分)教材呈现:下图是华师版八年级上册数学教材第94页的部分内容.1.线段垂直平分线我们已经知道线段是轴对称图形,线段的垂直平分线是线段的对称轴,如图,直线是线段的垂直平分线,是上任一点,连结.将线段沿直线对折,我们发现与完全重合.由此即有:线段垂直平分线的性质定理线段垂直平分线上的点到线段两端的距离相等.已知:如图,垂足为点,点是直线上的任意一点.求证:.分析图中有两个直角三角形和,只要证明这两个三角形全等,便可证得.定理证明:请根据教材中的分析,结合图①,写出“线段垂直平分线的性质定理”完整的证明过程.定理应用:(1)如图②,在中,直线分别是边的垂直平分线,直线m、n交于点,过点作于点.求证:.(1)如图③,在中,,边的垂直平分线交于点,边的垂直平分线交于点.若,则的长为__________.20.(6分)如图甲,正方形和正方形共一顶点,且点在上.连接并延长交于点.(1)请猜想与的位置关系和数量关系,并说明理由;(2)若点不在上,其它条件不变,如图乙.与是否还有上述关系?试说明理由.21.(6分)如图,在长方形ABCO中,点O为坐标原点,点B的坐标为(8,6),点A,C在坐标轴上,直线y=2x+b经过点A且交x轴于点F.(1)求b的值和△AFO的面积;(2)将直线y=2x+b向右平移6单位后交AB于点D,交y轴于点E;①求点D,E的坐标;②动点P在BC边上,点Q是坐标平面内第一象限内的点,且在平移后的直线上,若△APQ是等腰直角三角形,求点Q的坐标.22.(8分)如图,在平面直角坐标系中,,,.(1)在图中作出关于轴的对称图形;(2)在轴上确定一点,使的值最小,在图中画出点即可(保留作图痕迹);(3)直接写出的面积.23.(8分)阅读下列题目的解题过程:已知a、b、c为ΔABC的三边,且满足a2c2解:∵a2∴c2(∴c2∴ΔABC是直角三角形问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号:;(2)该步正确的写法应是:;(3)本题正确的结论为:.24.(8分)如图,,,,,垂足分别为,,,,求的长.25.(10分)已知,,求的值.26.(10分)在边长为1的小正方形网格中,△AOB的顶点均在格点上.(1)B点关于y轴的对称点坐标为______;(2)将△AOB向左平移3个单位长度,再向上平移2个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,△AOB边AB上有一点P的坐标为(a,b),则平移后对应点P1的坐标为______.

参考答案一、选择题(每小题3分,共30分)1、C【分析】首先利用平行线间的距离处处相等,得到点O是△ABC的内心,点O为三个内角平分线的交点,从而容易得到∠BOC=90°+∠BAC,通过计算即可得到答案.【详解】解:如图,过点O分别作OD⊥AC于D,OE⊥AB于E,OF⊥BC于F,

∵直线MN∥l,

∴OD=OE=OF,

∴点O是△ABC的内心,点O为三个内角平分线的交点,

∴∠BOC=180-(180-∠BAC)=90°+∠BAC=130°,

∴∠BAC=80°.

故选C.【点睛】本题考查了平行线的性质及三角形内心的性质及判定,利用平行线间的距离处处相等判定点O是△ABC的内心是解题的关键.2、B【分析】延长BO交AC于D,直接利用三角形的一个外角等于与它不相邻的两内角之和,即可得出结论.【详解】如图,延长BO交AC于D∵∠A=40°,∠ABO=20°,∴∠BDC=∠A+∠ABO=40°+20°=60°,∵∠ACO=30°,∴∠BOC=∠ACO+∠BDC=30°+60°=90°,故选:B.【点睛】此题主要考查了三角形外角的性质,熟记三角形的外角的性质是解本题的关键.3、B【解析】试题分析:根据极差、众数、平均数和中位数的定义对每一项进行分析即可.解:A、1出现了3次,出现的次数最多,则众数是1,故本选项错误;B、把这些数从小到大排列为:30,1,1,1,33,33,35,最中间的数是1,则中位数是1,故本选项正确;C、这组数据的平均数是(30+1+1+1+33+33+35)÷7=32,故本选项错误;D、极差是:35﹣30=5,故本选项错误;故选B.4、A【分析】根据勾股定理求出AB,再根据三角形面积关系求CD.【详解】在中,,,,所以AB=因为AC∙BC=AB∙CD所以CD=故选A【点睛】考核知识点:勾股定理的运用.利用面积关系求斜边上的高是关键.5、C【分析】根据三角形的三边关系可判断x的取值范围,进而可得答案.【详解】解:由三角形三边关系定理得7-2<x<7+2,即5<x<1.因此,本题的第三边应满足5<x<1,把各项代入不等式符合的即为答案.4,5,1都不符合不等式5<x<1,只有6符合不等式,故选C.【点睛】本题考查的是三角形的三边关系,属于基础题型,掌握三角形的三边关系是解题的关键.6、B【解析】试题解析:分析已知和所求,根据分式值为0的条件为:分子为0而分母不为0,不难得到(x-1)(x+2)=0且-1≠0;根据ab=0,a=0或b=0,即可解出x的值,再根据-1≠0,即可得到x的取值范围,由此即得答案.本题解析:∵的值为0∴(x-1)(x+2)=0且-1≠0.解得:x=-2.故选B.7、D【分析】由题意可证△ABC≌△CDE,即可得CD=AB=6cm,DE=BC=3cm,进而可求出BD的长.【详解】解:∵AB⊥BD,∠ACE=90°,

∴∠BAC+∠ACB=90°,∠ACB+∠DCE=90°,

∴∠DCE=∠BAC且∠B=∠D=90°,且AC=CE,

∴△ABC≌△CDE(AAS),

∴CD=AB=6cm,DE=BC=3cm,

∴BD=BC+CD=9cm.

故选:D.【点睛】本题考查了全等三角形的判定与性质,熟练运用全等三角形的判定和性质解决问题是本题的关键.8、B【分析】延长BG交CH于点E,根据正方形的性质证明△ABG≌△CDH≌△BCE,可得GE=BE-BG=2,HE=CH-CE=2,∠HEG=90°,从而由勾股定理可得GH的长.【详解】解:如图,延长BG交CH于点E,∵四边形ABCD是正方形,∴∠ABC=90°,AB=CD=10,∵AG=8,BG=6,∴AG2+BG2=AB2,∴∠AGB=90°,∴∠1+∠2=90°,又∵∠2+∠3=90°,∴∠1=∠3,同理:∠4=∠6,在△ABG和△CDH中,AB=CD=10AG=CH=8BG=DH=6∴△ABG≌△CDH(SSS),∴∠1=∠5,∠2=∠6,∴∠2=∠4,在△ABG和△BCE中,∵∠1=∠3,AB=BC,∠2=∠4,∴△ABG≌△BCE(ASA),∴BE=AG=8,CE=BG=6,∠BEC=∠AGB=90°,∴GE=BE-BG=8-6=2,同理可得HE=2,在Rt△GHE中,,故选:B.【点睛】本题主要考查正方形的性质、全等三角形的判定与性质、勾股定理及其逆定理的综合运用,通过证三角形全等得出△GHE为直角三角形且能够求出两条直角边的长是解题的关键.9、D【分析】根据二次根式的加减法对A进行判断;根据二次根式的加减法对B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的除法法则对D进行判断.【详解】A、不能合并,所以A选项错误;

B、不能合并,所以B选项错误;

C、原式=,所以C选项错误;

D、原式=,所以D选项正确.

故选:D.【点睛】此题考查二次根式的混合运算,解题关键在于先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.10、C【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【详解】解:根据三角形任意两边的和大于第三边,可知

A、2+4<7,不能够组成三角形,故A错误;

B、2+3=5,不能组成三角形,故B错误;

C、7+3>7,能组成三角形,故C正确;

D、3+5<9,不能组成三角形,故D错误;

故选:C.【点睛】本题考查了能够组成三角形三边的条件,熟练掌握构成三角形的条件是解题的关键.二、填空题(每小题3分,共24分)11、90º【分析】首先证明三角形全等,根据全等三角形的性质可得对应角相等,再由余角的定义和等量代换可得∠1与∠2的和为90°.【详解】解:如图,根据方格纸的性质,在△ABD和△CBE中,∴△ABD≌△CBE(SAS),∴∠1=∠BAD,∵∠BAD+∠2=90°,∴=90°.故答案为:90°.【点睛】此题主要考查了全等图形,关键是掌握全等三角形的判定和性质.12、【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:数据0.000000007用科学记数法表示为7×10-1.

故答案为:.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.13、【分析】连接AC,先利用勾股定理求出AC,再根据勾股定理的逆定理判定△ACD是直角三角形,分别计算两个直角三角形的面积,再求和即所求的面积.【详解】解:连接AC,∵在△ABC中,AB⊥BC即∠ABC=90°,AB=6,BC=8,∴,,又∵CD=24,DA=26,∴,∴,∴△ACD是直角三角形,且∠ACD=90°∴∴故答案为:144.【点睛】本题考查了勾股定理、勾股定理的逆定理的应用,同时考查了直角三角形的面积公式.作辅助线构造直角三角形是解题的关键.14、x-3+6=m;2;【分析】根据题意,常数6没有乘以(x-2),即可得到答案;把代入方程,即可求出m的值;把m的值代入,重新计算原分式方程,即可得到原分式方程的解.【详解】解:根据题意,由于常数6漏乘了公分母,则∴;把代入,得:,解得:;∴,∴,∴,∴.经检验,是原分式方程的解.故答案为:;2;.【点睛】本题考查了解分式方程,解题的关键是熟练掌握解分式方程的方法和步骤.注意不要漏乘公分母,解分式方程需要检验.15、4【解析】根据最简二次根式及同类二次根式的定义列方程求解.【详解】∵最简二次根式与是同类二次根式,∴2a−3=5,解得:a=4.故答案为4.【点睛】考查最简二次根式与同类二次根式的概念,化为最简后被开方数相同的根式称为同类二次根式,16、6【解析】由函数图像在B点处可知50秒时甲追上乙,C点为甲到达目的地,D点为乙达到目的地,故可设甲的速度为x,乙的速度为y,根据题意列出方程组即可求解.【详解】依题意,设甲的速度为x米每秒,乙的速度为y米每秒,由函数图像可列方程解得x=6,y=4,∴甲的速度为每秒6米故填6.【点睛】此题主要考查函数图像的应用,解题的关键是根据函数图像得到实际的含义,再列式求解.17、1【分析】根据四边形ABCD为平行四边形可得AE∥BC,根据平行线的性质和角平分线的性质可得出∠ABE=∠AEB,继而可得AB=AE,然后根据已知可求得结果.【详解】解:∵四边形ABCD为平行四边形,∴AE∥BC,AD=BC,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE,∴AE+DE=AD=BC=6,∴AE+2=6,∴AE=4,∴AB=CD=4,∴▱ABCD的周长=4+4+6+6=1,故答案为1.考点:平行四边形的性质.18、1【分析】已知给出了等腰三角形的顶角为100°,要求腰上的高与底边的夹角可以根据等腰三角形的性质:等腰三角形的一腰上的高与底边的夹角等于顶角的一半求解.【详解】∵等腰三角形的顶角为100°∴根据等腰三角形的性质:等腰三角形的一腰上的高与底边的夹角等于顶角的一半;∴高与底边的夹角为1°.故答案为1.【点睛】本题考查了等腰三角形的性质:等腰三角形的一腰上的高与底边的夹角等于顶角的一半;作为填空题,做题时可以应用一些正确的命题来求解.三、解答题(共66分)19、证明见解析;(1)证明见解析;(1)2.【分析】定理证明:根据垂直的定义可得∠PAC=∠PCB=90°,利用SAS可证明△PAC≌△PBC,根据全等三角形的性质即可得出PA=PB;(1)如图,连结,根据垂直平分线的性质可得OB=OC,OA=OC,即可得出OA=OB,根据等腰三角形“三线合一”的性质可得AH=BH;(1)如图,连接BD、BE,根据等腰三角形的性质可得出∠A=∠C=30°,根据垂直平分线的性质可得AD=BD,CE=BE,根据等腰三角形的性质及外角的性质可证明三角形BDE是等边三角形,可得DE=AC,即可得答案.【详解】定理证明:,∴∠PAC=∠PCB=90°,,..(1)如图,连结.∵直线m、n分别是边的垂直平分线,..,.(1)如图,连接BD、BE,∵∠ABC=110°,AB=BC,∴∠A=∠C=30°,∵边的垂直平分线交于点,边的垂直平分线交于点,∴AD=BD,CE=BE,∴∠A=∠ABD,∠C=∠CBE,∴∠BDE=1∠A=20°,∠BED=1∠C=20°,∴∠DBE=20°∴△BDE是等边三角形,∴DE=BD=BE=AD=CE,∴DE=AC∵AC=18,∴DE=2故答案为:2.【点睛】本题考查了线段的垂直平分线的性质、全等三角形的判定和性质、等边三角形的判定和性质等知识,掌握并灵活运用数学基本知识是解答本题的关键.20、(1)BG=DE,BG⊥DE,理由见解析;(2)BG和DE还有上述关系:BG=DE,BG⊥DE,理由见解析【分析】(1)由四边形ABCD,CEFG都是正方形,得到CB=CD,CG=CE,∠BCG=∠DCE=90°,于是Rt△BCG≌Rt△DCE,得到BG=DE,∠CBG=∠CDE,根据三角形内角和定理可得到∠DHG=∠GCB=90°,即BG⊥DE.

(2)BG和DE还有上述关系.证明的方法与(1)一样.【详解】(1)BG=DE,BG⊥DE.理由:∵四边形ABCD,CEFG都是正方形,∴CB=CD,CG=CE,∠BCG=∠DCE=90°,∴△BCG≌△DCE(SAS),∴BG=DE,∵△BCG≌△DCE,∴∠CBG=∠CDE,而∠BGC=∠DGH,∴∠DHG=∠GCB=90°,即BG⊥DE.∴BG=DE,BG⊥DE;(2)BG和DE还有上述关系:BG=DE,BG⊥DE.∵四边形ABCD,CEFG都是正方形,∴CB=CD,CG=CE,∠BCD=∠GCE=90°∵∠BCG=∠BCD+∠DCG,∠DCE=∠GCE+∠DCG∴∠BCG=∠DCE∴△BCG≌△DCE(SAS),∴BG=DE,∠CBG=∠CDE,又∵∠BKC=∠DKH,∴∠DHK=∠DCB=90°即BG⊥DE.∴BG=DE,BG⊥DE.【点睛】本题主要考查正方形的性质,全等三角形的性质和判定,利用全等三角形的性质证得∠CBG=∠CDE,∠CBG=∠CDE是解题的关键.21、(1)b=6,S△ADO=×3×6=;(2)①D(6,6),E(0,-6);②点Q的坐标可以为(,),(4,2),(,).【分析】(1)由矩形的性质和点B坐标求得A坐标,代入直线方程中即可求得b值,进而求得点F坐标,然后利用三角形面积公式即可解答;(2)①根据图象平移规则:左加右减,上加下减得到平移后的解析式,进而由已知可求得点D、E的坐标;②根据题意,分三种情况:若点A为直角顶点时,点Q在第一象限;若点P为直角顶点时,点Q在第一象限;若点Q为直角顶点,点Q在第一象限,画出对应的图象分别讨论求解即可.【详解】(1)由题意得A(0,6),代入y=2x+b中,解得:b=6,即y=2x+6,令y=0,由0=2x+6得:x=-3,即F(-3,0)∴OA=6,OF=3,∴S△ADO=×3×6=;

(2)①由题意得平移后的解析式为:y=2(x-6)+6=2x-6当y=6时,2x-6=6,解得:x=6∴D(6,6),E(0,-6)②若点A为直角顶点时,点Q在第一象限,连结AC,如图2,∠APB>∠ACB>45°,∴△APQ不可能为等腰直角三角形,∴点Q不存在;若点P为直角顶点时,点Q在第一象限,如图3,过点Q作QH⊥CB,交CB的延长线于点H,则Rt△ABP≌Rt△PHQ,∴AB=PH=8,HQ=BP,设Q(x,2x−6),则HQ=x−8,∴2x−6=8+6−(x−8),∴x=,∴Q(,)若点Q为直角顶点,点Q在第一象限,如图4,设Q′(x,2x−6),∴AG′=Q′H′=6−(2x−6),∴x+6−(2x−6)=8,∴x=4,∴Q′(4,2),设Q′′(x,2x−6),同理可得:x+2x−6−6=8,∴x=,∴Q′′(,),综上所述,点Q的坐标可以为(,),(4,2),(,).【点睛】本题是一道一次函数与几何图形的综合题,涉及图形与坐标、求一次函数的表达式、直线与坐标轴围成的面积、图象平移的坐标变化、等腰直角三角形的判定、解一元一次方程等知识,解答的关键是认真审题,从图象中获取相关信息,利用数形结合法、待定系数法、分类讨论的思想方法确定解题思路,进而推理、探究和计算.22、(1)见解析;(2)见解析;(3)【分析】(1)依据轴对称的性质,即可得到各顶点,进而得出各顶点的坐标;(2)作点A关于y轴的对称点A’’,连接A’’C,依据两点之间,线段最短,可得与y轴的交点P即为所求;(3)利用割补法即可求解.【详解】(1)如图所示,为所求;(2)如图所示,P点为所求;(3).【点睛】本题主要考查了利用轴对称变换作图,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.23、故答案为:(1)③;(2)当a2−b2=0时,a=b;当a2−b2≠0时,a2+b2=c2;(3)△ABC是直角三角形或等腰三角形或等腰直角三角形.【解析】(1)上述解题过程,从第三步出现错误,错误原因为在等式两边除以a2−b2,没有考虑(2)正确的做法为:将等式右边的移项到方程左边,然后提取公因式将方程左边分解因式,根据两数相乘积为0,两因式中至少有一个数为0转化为两个等式;(3)根据等腰三角形的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论