安徽省合肥市五十中学2023-2024学年数学八上期末质量跟踪监视试题含解析_第1页
安徽省合肥市五十中学2023-2024学年数学八上期末质量跟踪监视试题含解析_第2页
安徽省合肥市五十中学2023-2024学年数学八上期末质量跟踪监视试题含解析_第3页
安徽省合肥市五十中学2023-2024学年数学八上期末质量跟踪监视试题含解析_第4页
安徽省合肥市五十中学2023-2024学年数学八上期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省合肥市五十中学2023-2024学年数学八上期末质量跟踪监视试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,在△ABC中,分别以点A和点B为圆心,大于AB的长为半径画弧,两弧相交于点M、N,作直线MN,交BC于点D,连接AD,若△ADC的周长为14,BC=8,则AC的长为A.5 B.6 C.7 D.82.下列各数中为无理数的是()A. B. C. D.3.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是()A.9,40,41 B.5,12,13 C.0.3,0.4,0.5 D.8,24,254.若是一个完全平方式,则的值为()A.-7 B.13 C.7或-13 D.-7或135.以下问题,不适合用普查的是()A.旅客上飞机前的安检 B.为保证“神州9号”的成功发射,对其零部件进行检查C.了解某班级学生的课外读书时间 D.了解一批灯泡的使用寿命6.已知则的值为:A.1.5 B. C. D.7.关于的一元二次方程的根的情况为()A.有两个不相等的实数根 B.有两个相等的实数根 C.没有实数根 D.无法确定8.在平面直角坐标系中,点(2,3)关于y轴对称的点的坐标是()A.(﹣2,﹣3) B.(2,﹣3) C.(﹣2,3) D.(2,3)9.如图,△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是()A.18° B.24° C.30° D.36°10.如图,AO=,CO=DO,AD与BC交于E,∠O=40º,∠=25º,则∠的度数是(

)A. B. C. D.二、填空题(每小题3分,共24分)11.如图,在△ABC中,BD和CE是△ABC的两条角平分线.若∠A=52°,则∠1+∠2的度数为_______.12.如图,长方形ABCD中AB=2,BC=4,正方形AEFG的边长为1.正方形AEFG绕点A旋转的过程中,线段CF的长的最小值为_____.13.在△ABC中,AB=AC,AB的垂直平分线交AC于D,交AB于E,连接BD,若∠ADE=40°,则∠DBC=_____.14.如图所示,是由截面相同的长方形墙砖粘贴的部分墙面,根据图中信息可得每块墙砖的截面面积是__________.15.如图,将等腰绕底角顶点A逆时针旋转15°后得到,如果,那么两个三角形的重叠部分面积为____.16.已知x=﹣2,y=1是方程mx+2y=6的一个解,则m的值为_____.17.已知:点A(a-3,2b-1)在y轴上,点B(3a+2,b+5)在x轴上,则点C(a,b)向左平移3个单位,再向上平移2个单位后的坐标为________.18.一个正多边形的每个内角都比与它相邻的外角的3倍还多20°,则此正多边形是_____边形,共有_____条对角线.三、解答题(共66分)19.(10分)计算:(1)(﹣a1)3•4a(1)1x(x+1)+(x+1)1.20.(6分)如图1,在中,于E,,D是AE上的一点,且,连接BD,CD.试判断BD与AC的位置关系和数量关系,并说明理由;如图2,若将绕点E旋转一定的角度后,试判断BD与AC的位置关系和数量关系是否发生变化,并说明理由;如图3,若将中的等腰直角三角形都换成等边三角形,其他条件不变.试猜想BD与AC的数量关系,请直接写出结论;你能求出BD与AC的夹角度数吗?如果能,请直接写出夹角度数;如果不能,请说明理由.21.(6分)已知,是等边三角形,、、分别是、、上一点,且.(1)如图1,若,求;(2)如图2,连接,若,求证:.22.(8分)如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD,等边△ABE,已知∠BAC=30°,EF⊥AB,垂足为F,连接DF(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.23.(8分)已知:如图,在△ABC中,∠B=∠C,AD平分外角∠EAC.求证:AD∥BC.24.(8分)阅读材料,并回答问题:在一个含有多个字母的式子中,若任意交换两个字母的位置,式子的值不变,则这样的式子叫做对称式.例如:等都是对称式.(1)在下列式子中,属于对称式的序号是_______;①②③④.(2)若,用表示,并判断的表达式是否为对称式;当时,求对称式的值.25.(10分)(1)因式分解:(2)解方程:(3)计算:26.(10分)如图,在的网格纸中,每个小正方形的边长都为1,动点,分别从点,点同时出发向右移动,点的运动速度为每秒2个单位,点的运动速度为每秒1个单位,当点运动到点时,两个点同时停止运动.(1)当运动时间为3秒时,请在网格纸图中画出线段,并求其长度.(2)在动点,运动的过程中,若是以为腰的等腰三角形,求相应的时刻的值.

参考答案一、选择题(每小题3分,共30分)1、A【分析】根据题意可得MN是直线AB的中点,所以可得AD=BD,BC=BD+CD,而△ADC为AC+CD+AD=14,即AC+CD+BD=14,因此可得AC+BC=14,已知BC即可求出AC.【详解】根据题意可得MN是直线AB的中点的周长为已知,故选B【点睛】本题主要考查几何中的等量替换,关键在于MN是直线AB的中点,这样所有的问题就解决了.2、C【分析】无理数就是无限循环小数,依据定义即可作出判断.【详解】A.是有理数,不符合题意;B.是有理数,不符合题意;C.是无限不循环小数,是无理数,正确;D.=2是整数,不符合题意;故选:C.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,6,0.8080080008…(每两个8之间依次多1个0)等形式.3、D【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形,分析得出即可.【详解】A、92+402=412,

∴此三角形是直角三角形,不合题意;

B、∵52+122=132,

∴此三角形是直角三角形,不合题意;

C、∵0.32+0.42=0.52,

∴此三角形是直角三角形,不合题意;

D、82+242≠252,

∴此三角形不是直角三角形,符合题意;

故选:D.【点睛】此题考查勾股定理的逆定理,解题关键在于在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.4、D【分析】根据题意利用完全平方公式的结构特征进行判断,即可求出m的值.【详解】解:∵是一个完全平方式,∴=±10,∴-7或13.故选:D.【点睛】本题考查完全平方公式,熟练掌握完全平方公式的结构特征是解本题的关键.5、D【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:旅客上飞机前的安检适合用普查;为保证“神州9号”的成功发射,对其零部件进行检查适合用普查;了解某班级学生的课外读书时间适合用普查;了解一批灯泡的使用寿命不适合用普查.故选D.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6、B【解析】试题解析:∵,∴a=b,∴.故选B.考点:比例的性质.7、A【分析】利用根的判别式确定一元二次方程根的情况.【详解】解:∴一元二次方程有两个不相等的实数根.故选:A.【点睛】本题考查一元二次方程的根的判别式,解题的关键是掌握利用根的判别式确定方程根的情况的方法.8、C【分析】平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(﹣x,y),即关于纵轴的对称点,纵坐标不变,横坐标变成相反数.【详解】解:点(2,3)关于y轴对称的点的坐标是(﹣2,3).故选C.【点睛】本题考查关于x轴、y轴对称的点的坐标,利用数形结合思想解题是关键.9、A【解析】试题分析:先根据等腰三角形的性质求得∠C的度数,再根据三角形的内角和定理求解即可.∵AB=AC,∠A=36°∴∠C=72°∵BD是AC边上的高∴∠DBC=180°-90°-72°=18°故选A.考点:等腰三角形的性质,三角形的内角和定理点评:三角形的内角和定理是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.10、A【解析】先证明△OAD≌△OBC,从而得到∠A=∠B,再根据三角形外角的性质求得∠BDE的度数,最后根据三角形的内角和定理即可求出∠BDE的度数.【详解】解:在△OAD和△OBC中,,∴△OAD≌△OBC(SAS)∴∠A=∠B=25°,∵∠BDE=∠O+∠A=40°+25°=65°,∴∠BED=180°-∠BDE-∠A=180°-65°-26°=90°,故选A.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、AAS、ASA和HL,做题时,要根据已知条件结合图形进行思考.二、填空题(每小题3分,共24分)11、64°【解析】解:∵∠A=52°,∴∠ABC+∠ACB=128°.∵BD和CE是△ABC的两条角平分线,∴∠1=∠ABC,∠2=∠ACB,∴∠1+∠2=(∠ABC+∠ACB)=64°.故答案为64°.点睛:本题考查的是三角形内角和定理、角平分线的定义,掌握三角形内角和等于180°是解题的关键.12、2﹣【分析】连接AF,CF,AC,利用勾股定理求出AC、AF,再根据三角形的三边关系得到当点A,F,C在同一直线上时,CF的长最小,最小值为2﹣.【详解】解:如图,连接AF,CF,AC,∵长方形ABCD中AB=2,BC=4,正方形AEFG的边长为1,∴AC=2,AF=,∵AF+CF≥AC,∴CF≥AC﹣AF,∴当点A,F,C在同一直线上时,CF的长最小,最小值为2﹣,故答案为:2﹣.【点睛】此题考查矩形的性质,正方形的性质,勾股定理,三角形的三边关系.13、15°.【解析】先根据线段垂直平分线的性质得出DA=DB,∠AED=∠BED=90,即可得出∠A=∠ABD,∠BDE=∠ADE,然后根据直角三角形的两锐角互余和等腰三角形的性质分别求出∠ABD,∠ABC的度数,即可求出∠DBC的度数.【详解】∵AB的垂直平分线交AC于D,交AB于E,∴DA=DB,∠AED=∠BED=90,∴∠A=∠ABD,∠BDE=∠ADE,∵∠ADE=40,∴∠A=∠ABD=90=50,∵AB=AC,∴∠ABC=,∴∠DBC=∠ABC-∠ABD=15.故答案为:15.【点睛】本题考查线段垂直平分线的性质,等腰三角形的性质.14、【分析】设每块墙砖的长为xcm,宽为ycm,根据题意,有“三块横放的墙砖比一块竖放的墙砖高5cm,两块横放的墙砖比两块竖放的墙砖低18cm”列方程组求解可得.【详解】解:设每块墙砖的长为xcm,宽为ycm,根据题意得:,解得:,∴每块墙砖的截面面积是:;故答案为:112.【点睛】本题主要考查二元一次方程组的应用,理解题意找到题目蕴含的相等关系列方程组是解题的关键.15、【分析】设B′C′与AB相交于点D,根据等腰直角三角形的性质可得∠BAC=45°,根据旋转角可得∠CAC′=15°,然后求出∠C′AD=30°,根据30°角所对的直角边等于斜边的一半可得AD=2C′D,然后利用勾股定理列式求出C′D的长度,再根据三角形的面积公式列式进行计算即可得解.【详解】设B′C′与AB相交于点D,如图,在等腰直角△ABC中,∠BAC=45°,∵旋转角为15°,∴∠CAC′=15°,∴∠C′AD=∠BAC-∠CAC′=45°-15°=30°,∴AD=2C′D,在Rt△AC′D中,根据勾股定理,AC′2+C′D2=AD2,即12+C′D2=4C′D2,解得C′D=,∴重叠部分的面积=.故答案为:.【点睛】本题考查了旋转的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,勾股定理的应用,熟练掌握旋转的性质是解题的关键.16、﹣2【分析】把x、y的值代入方程可得关于m的一元一次方程,解方程求出m的值即可得答案.【详解】把x=﹣2,y=1代入方程得:﹣2m+2=6,移项合并得:﹣2m=4,解得:m=﹣2,故答案为:﹣2【点睛】本题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.17、(0,-3).【分析】根据横轴上的点,纵坐标为零,纵轴上的点,横坐标为零可得a、b的值,然后再根据点的平移方法可得C平移后的坐标.【详解】∵A(a-3,2b-1)在y轴上,∴a-3=0,解得:a=3,∵B(3a+2,b+5)在x轴上,∴b+5=0,解得:b=-5,∴C点坐标为(3,-5),∵C向左平移3个单位长度再向上平移2个单位长度,∴所的对应点坐标为(3-3,-5+2),即(0,-3),故答案为:(0,-3).【点睛】此题主要考查了坐标与图形的变化--平移,以及坐标轴上点的坐标特点,关键是掌握点的坐标的变化规律:横坐标,右移加,左移减;纵坐标,上移加,下移减.18、九1【分析】设多边形的一个外角为α,则与其相邻的内角等于3α+20°,根据内角与其相邻的外角的和是180度列出方程,求出α的值,再由多边形的外角和为360°,求出此多边形的边数为360°÷α;依据n边形的对角线条数为:n(n-3),即可得到结果.【详解】解:设多边形的一个外角为α,则与其相邻的内角等于3α+20°,

由题意,得(3α+20)+α=180°,

解得:α=40°.

即多边形的每个外角为40°.

又∵多边形的外角和为360°,

∴多边形的外角个数=.

∴多边形的边数为9;∵n边形的对角线条数为:n(n-3),

∴当n=9时,n(n-3)=×9×6=1;

故答案为:九;1.【点睛】本题考查了多边形的内角和定理,外角和定理,多边形内角与外角的关系以及多边形的对角线条数,运用方程求解比较简便.三、解答题(共66分)19、(2)-4a7;(2)3x2+4x+2.【解析】试题分析:(2)根据幂的乘方、同底数幂的乘法进行计算即可;(2)根据单项式乘以多项式以及完全平方公式进行计算即可.解:(2)原式=﹣a6•4a=﹣4a7;(2)原式=2x2+2x+x2+2x+2=3x2+4x+2.20、(1)见解析;(2)见解析;(3)①BD=AC理由见解析;见解析.【解析】(1)可以证明△BDE≌△ACE推出BD=AC,BD⊥AC.(2)如图2中,不发生变化.只要证明△BED≌△AEC,推出BD=AC,∠BDE=∠ACE,由∠DEC=90°,推出∠ACE+∠EOC=90°,因为∠EOC=∠DOF,所以∠BDE+∠DOF=90°,可得∠DFO=180°-90°=90°,即可证明.(3)①如图3中,结论:BD=AC,只要证明△BED≌△AEC即可.②能;由△BED≌△AEC可知,∠BDE=∠ACE,推出∠DFC=180°-(∠BDE+∠EDC+∠DCF)=180°-(∠ACE+∠EDC+∠DCF)=180°-(60°+60°)=60°即可解决问题.【详解】解:,,

理由是:延长BD交AC于F.

在和中

≌,

,,

不发生变化.

如图2,令AC、DE交点为O

理由:,

在和中

≌,

,,

;(3);

证明:和是等边三角形,

,,,,

在和中

≌,

.②夹角为.

解:如图3,令AC、BD交点为F,

由①知≌,

,即BD与AC所成的角的度数为或【点睛】本题考查了等边三角形性质,等腰直角三角形的性质,全等三角形的性质和判定的应用,主要考查了学生的推理能力,熟练掌握几何变换是解题的关键.21、(1);(2)见详解【分析】(1)由等边三角形的性质得出,然后根据三角形外角的性质和等量代换得出,则的度数可求;(2)由和得出,再根据内错角相等,两直线平行即可证明结论.【详解】(1)∵是等边三角形∴∵∵∵(2),【点睛】本题主要考查三角形外角的性质和平行线的判定,掌握三角形外角的性质和平行线的判定是解题的关键.22、证明见解析.【分析】(1)一方面Rt△ABC中,由∠BAC=30°可以得到AB=2BC,另一方面△ABE是等边三角形,EF⊥AB,由此得到AE=2AF,并且AB=2AF,从而可证明△AFE≌△BCA,再根据全等三角形的性质即可证明AC=EF.(2)根据(1)知道EF=AC,而△ACD是等边三角形,所以EF=AC=AD,并且AD⊥AB,而EF⊥AB,由此得到EF∥AD,再根据平行四边形的判定定理即可证明四边形ADFE是平行四边形.【详解】证明:(1)∵Rt△ABC中,∠BAC=30°,∴AB=2BC.又∵△ABE是等边三角形,EF⊥AB,∴AB=2AF.∴AF=BC.∵在Rt△AFE和Rt△BCA中,AF=BC,AE=BA,∴△AFE≌△BCA(HL).∴AC=EF.(2)∵△ACD是等边三角形,∴∠DAC=60°,AC=AD.∴∠DAB=∠DAC+∠BAC=90°.∴EF∥AD.∵AC=EF,AC=AD,∴EF=AD.∴四边形ADFE是平行四边形.考点:1.全等三角形的判定与性质;2.等边三角形的性质;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论