安徽省阜阳市太和县2023-2024学年数学八上期末联考试题含解析_第1页
安徽省阜阳市太和县2023-2024学年数学八上期末联考试题含解析_第2页
安徽省阜阳市太和县2023-2024学年数学八上期末联考试题含解析_第3页
安徽省阜阳市太和县2023-2024学年数学八上期末联考试题含解析_第4页
安徽省阜阳市太和县2023-2024学年数学八上期末联考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省阜阳市太和县2023-2024学年数学八上期末联考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.正比例函数y=kx(k≠0)的图象经过第二、四象限,则一次函数y=x+k的图象大致是()A. B. C. D.2.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是()秒A.2.5 B.3 C.3.5 D.43.下列各式计算结果是的是()A. B. C. D.4.第一次“龟兔赛跑”,兔子因为在途中睡觉而输掉比赛,很不服气,决定与乌龟再比一次,并且骄傲地说,这次我一定不睡觉,让乌龟先跑一段距离我再去追都可以赢.结果兔子又一次输掉了比赛,则下列函数图象可以体现这次比赛过程的是()A. B.C. D.5.满足下列条件的不是直角三角形的是A.三边之比为1:2: B.三边之比1::C.三个内角之比1:2:3 D.三个内角之比3:4:56.如图,△ABC的∠B的外角的平分线BD与∠C的外角的平分线CE相交于点P,若点P到直线AC的距离为4,则点P到直线AB的距离为()A.4 B.3 C.2 D.17.在平面直角坐标系xOy中,点P在由直线y=-x+3,直线y=4和直线x=1所围成的区域内或其边界上,点Q在x轴上,若点R的坐标为R(2,2),则QP+QR的最小值为()A. B.+2 C.3 D.48.能将三角形面积平分的是三角形的()A.角平分线 B.高 C.中线 D.外角平分线9.如图,在△ABC中,AD⊥BC于点D,BE⊥AC于点E,AD与BE相交于点F,若BF=AC,∠CAD=25°,则∠ABE的度数为()A.30° B.15° C.25° D.20°10.如图,在∠AOB的两边上,分别取OM=ON,再分别过点M、N作OA、OB的垂线,交点为P,画射线OP,则OP平分∠AOB的依据是()A.HL B.SAS C.AAS D.SSS11.下列说法正确的是()A.等腰直角三角形的高线、中线、角平分线互相重合 B.有两条边相等的两个直角三角形全等C.四边形具有稳定性 D.角平分线上的点到角两边的距离相等12.计算的结果是()A. B.5 C. D.-5二、填空题(每题4分,共24分)13.若实数x,y满足y=+3,则x+y=_____.14.如图所示,一个角60°的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2=_____.15.如图,已知,且,那么是的________(填“中线”或“角平分线”或“高”).16.如图,△ABC中,∠BAC=70°,∠ABC的平分线与∠ACB的外角平分线交于点O,则∠BOC=_____度.17.如图,将长方形ABCD的边AD沿折痕AE折叠,使点D落在BC上的F处,若AB=5,AD=13,则EF=_____.18.若的整数部分为,则满足条件的奇数有_______个.三、解答题(共78分)19.(8分)某天,一蔬菜经营户用1200元钱按批发价从蔬菜批发市场买了西红柿和豆角共400kg,然后在市场上按零售价出售,西红柿和豆角当天的批发价和零售价如表所示:品名西红柿豆角批发价(单位:元/kg)2.43.2零售价(单位:元/kg)3.85.2(1)该经营户所批发的西红柿和豆角的质量分别为多少kg?(2)如果西红柿和豆角全部以零售价售出,他当天卖出这些西红柿和豆角赚了多少钱?20.(8分)发现任意三个连续的整数中,最大数与最小数这两个数的平方差是4的倍数;验证:(1)的结果是4的几倍?(2)设三个连续的整数中间的一个为n,计算最大数与最小数这两个数的平方差,并说明它是4的倍数;延伸:说明任意三个连续的奇数中,最大的数与最小的数这两个数的平方差是8的倍数.21.(8分)甲、乙两工程队合作完成一项工程,需要12天完成,工程费用共36000元,若甲、乙两工程队单独完成此项工程,乙工程队所用的时间是甲工程队的1.5倍,乙工程队每天的费用比甲工程队少800元.(1)问甲、乙两工程队单独完成此项工程各需多少天?(2)若让一个工程队单独完成这项工程,哪个工程队的费用较少?22.(10分)以下表示小明到水果店购买2个单价相同椰子和10个单价相同柠檬的经过.小明:老板根据上面两人对话,求原来椰子和柠檬的单价各是多少?23.(10分)解下列分式方程.(1)(2)24.(10分)因式分解:(1)(2).25.(12分)课堂上,老师出了一道题:比较与的大小.小明的解法如下:解:,因为,所以,所以,所以,所以,我们把这种比较大小的方法称为作差法.(1)根据上述材料填空(在横线上填“”“=”或“”):若,则;若,则;若,则.(2)利用上述方法比较实数与的大小.26.如图,在△ABC中,AB=AC,AD和BE是高,它们相交于点H,且AE=BE求证:AH=2BD

参考答案一、选择题(每题4分,共48分)1、B【解析】∵正比例函数y=kx(k≠0)的图像经过第二、四象限,∴k<0,∴一次函数y=x+k的图像与y轴交于负半轴,且经过第一、三象限.故选B.2、D【详解】解:设运动的时间为x,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,当△APQ是等腰三角形时,AP=AQ,AP=20﹣3x,AQ=2x,即20﹣3x=2x,解得x=1.故选D.【点睛】此题主要考查学生对等腰三角形的性质这一知识点的理解和掌握,此题涉及到动点,有一定的拔高难度,属于中档题.3、B【分析】根据同底数幂相乘,幂的乘方,同底数幂相除及合并同类项的知识解答即可.【详解】,故A错误;,故B正确;,故C错误;与不是同类项,无法合并,故D错误.故选:B【点睛】本题考查的是同底数幂相乘,幂的乘方,同底数幂相除及合并同类项,掌握各运算的法则是关键.4、B【解析】根据乌龟早出发,早到终点,结合各图象进行分析判断即可.【详解】A、兔子后出发,先到了,不符合题意;B、乌龟比兔子早出发,而早到终点,符合题意;C、乌龟先出发后到,不符合题意;D、乌龟先出发,与兔子同时到终点,不符合题意,故选B.【点睛】本题考查了函数图象,弄清题意,认真分析是解题的关键.5、D【解析】根据三角形内角和定理和勾股定理的逆定理判定是否为直角三角形.【详解】解:A、,符合勾股定理的逆定理,所以是直角三角形;B、,三边符合勾股定理的逆定理,所以是直角三角形;C、根据三角形内角和定理,求得第三个角为90°,所以此三角形是直角三角形;D、根据三角形内角和定理,求得各角分别为45°,60°,75°,所以此三角形不是直角三角形;故选:D.【点睛】本题考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足,那么这个三角形就是直角三角形.也考查了三角形内角和定理.6、A【分析】过P作PQ⊥AC于Q,PW⊥BC于W,PR⊥AB于R,根据角平分线性质得出PQ=PR,即可得出答案.【详解】过P作PQ⊥AC于Q,PW⊥BC于W,PR⊥AB于R,∵△ABC的∠B的外角的平分线BD与∠C的外角的平分线CE相交于点P,∴PQ=PW,PW=PR,

∴PR=PQ,

∵点P到AC的距离为4,

∴PQ=PR=4,

则点P到AB的距离为4,

故选A.【点睛】本题考查了角平分线性质的应用,能灵活运用性质进行推理是解此题的关键,注意:角平分线上的点到角两边的距离相等.7、A【解析】试题分析:本题需先根据题意画出图形,再确定出使QP+QR最小时点Q所在的位置,然后求出QP+QR的值即可.试题解析:当点P在直线y=-x+3和x=1的交点上时,作P关于x轴的对称点P′,连接P′R,交x轴于点Q,此时PQ+QR最小,连接PR,∵PR=1,PP′=4∴P′R=∴PQ+QR的最小值为故选A.考点:一次函数综合题.8、C【解析】试题解析:根据三角形的面积公式,只要两个三角形具有等底等高,则两个三角形的面积相等.根据三角形的中线的概念,故能将三角形面积平分的是三角形的中线.故选C.考点:1.三角形的中线;2.三角形的面积.9、D【分析】利用全等三角形的性质即可解决问题.【详解】解:证明:∵AD⊥BC,∴∠BDF=∠ADC,又∵∠BFD=∠AFE,∴∠CAD=∠FBD,在△BDF和△ACD中,∴△BDF≌△ACD(AAS),∴∠DBF=∠CAD=25°.∵DB=DA,∠ADB=90°,∴∠ABD=45°,∴∠ABE=∠ABD﹣∠DBF=20°故选:D.【点睛】本题考查全等三角形的判定和性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.10、A【分析】利用判定方法“HL”证明Rt△OMP和Rt△ONP全等,进而得出答案.【详解】解:在Rt△OMP和Rt△ONP中,

∴Rt△OMP≌Rt△ONP(HL),

∴∠MOP=∠NOP,

∴OP是∠AOB的平分线.

故选择:A.【点睛】本题考查了全等三角形的应用以及基本作图,熟练掌握三角形全等的判定方法并读懂题目信息是解题的关键.11、D【分析】根据等腰三角形的性质、全等三角形的判定、四边形的性质、角平分线的性质判断即可.【详解】解:等腰三角形底边上的中线、高线和所对角的角平分线互相重合,A选项错误;有两条边相等的两个直角三角形全等,必须是对应直角边或对应斜边,B选项错误;四边形不具有稳定性,C选项错误;角平分线上的点到角两边的距离相等,符合角平分线的性质,D选项正确.故选D.【点睛】本题比较简单,考查的是等腰三角形的性质、全等三角形的判定、四边形的性质、角平分线的性质,需要准确掌握定理内容进行判断.12、B【解析】根据二次根式的性质进行化简,即可得到答案.【详解】解:,故选:B.【点睛】本题考查了二次根式的性质,解题的关键是熟练掌握二次根式的性质进行计算.二、填空题(每题4分,共24分)13、1.【分析】根据被开方数大于等于0列式求出x的值,再求出y的值,然后相加即可得解.【详解】解:根据题意得,5﹣x≥0且x﹣5≥0,解得x≤5且x≥5,∴x=5,y=3,∴x+y=5+3=1.故答案为:1.【点睛】本题考查了二次根式有意义的条件,掌握二次根式的被开方数大于等零时有意义是解题的关键.14、240°.【分析】三角形纸片中,剪去其中一个60°的角后变成四边形,则根据多边形的内角和等于360度即可求得∠1+∠2的度数.【详解】解:根据三角形的内角和定理得:四边形除去∠1,∠2后的两角的度数为180°﹣60°=120°,则根据四边形的内角和定理得:∠1+∠2=360°﹣120°=240°.故答案为:240°.【点睛】本题考查多边形角度的计算,关键在于结合图形运用角度转换.15、中线【分析】通过证明,可得,从而得证是的中线.【详解】∵∴∵,∴∴∴是的中线故答案为:中线.【点睛】本题考查了全等三角形的问题,掌握全等三角形的性质以及判定定理是解题的关键.16、35【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠BAC+∠ABC=∠ACE,∠BOC+∠OBC=∠OCE,再根据角平分线的定义可得∠OBC=∠ABC,∠OCE=∠ACE,然后整理可得∠BOC=∠BAC.【详解】解:由三角形的外角性质,∠BAC+∠ABC=∠ACE,∠BOC+∠OBC=∠OCE,∵∠ABC的平分线与∠ACB的外角平分线交于点O,∴∠OBC=∠ABC,∠OCE=∠ACE,∴(∠BAC+∠ABC)=∠BOC+∠ABC,∴∠BOC=∠BAC,∵∠BAC=70°,∴∠BOC=35°,故答案为:35°.【点睛】本题考查了三角形的内角和定理、三角形的外角性质,掌握三角形的一个外角等于与它不相邻的两个内角的和的性质,要注意整体思想的利用.17、【分析】由翻折的性质得到AF=AD=13,在Rt△ABF中利用勾股定理求出BF的长,进而求出CF的长,再根据勾股定理可求EC的长.【详解】解:∵四边形ABCD是长方形,∴∠B=90°,∵△AEF是由△ADE翻折,∴AD=AF=13,DE=EF,在Rt△ABF中,AF=13,AB=5,∴BF===12,∴CF=BC﹣BF=13﹣12=1.∵EF2=EC2+CF2,∴EF2=(5﹣EF)2+1,∴EF=,故答案为:.【点睛】本题考查勾股定理的综合应用、图形的翻折,解题的关键是熟练掌握勾股定理和翻折的性质.18、9【分析】的整数部分为,则可求出a的取值范围,即可得到答案.【详解】解:的整数部分为,则a的取值范围8<a<27所以得到奇数有:9、11、13、15、17、19、21、23、25共9个故答案为:9【点睛】此题主要考查了估算无理数的大小,估算是我们具备的数学能力,“夹逼法”是估算的一般方法.三、解答题(共78分)19、(1);(2)当天卖这些西红柿和豆角赚了元【分析】(1)设该经营户批发西红柿,批发豆角.根据题意列出二元一次方程组,解方程组即可得到答案;(2)根据利润=零售额成本,即可求出当天的利润.【详解】解:设该经营户批发西红柿,批发豆角.由题意得:,解得:答:该经营户批发西红柿,批发豆角.(元);答:当天卖这些西红柿和豆角赚了元.【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.20、验证:(1)详见解析;(2)详见解析;延伸:详见解析.【分析】(1)计算出的值即可知结论;(2)设三个连续的整数中间的一个为n,则最大的数为,最小的数为,由题意可得,化简即可;延伸:设中间一个数为,则最大的奇数为,最小的奇数为,由题意可得,化简即可.【详解】解:发现:即的结果是4的倍;(2)设三个连续的整数中间的一个为n,则最大的数为,最小的数为又∵n是整数,∴任意三个连续的整数中,最大数与最小数这两个数的平方差是4的倍数;延伸:设中间一个数为,则最大的奇数为,最小的奇数为又∵n是整数∴任意三个连续的奇数中,最大的数与最小的数这两个数的平方差是8的倍数【点睛】本题主要考查可乘法公式,熟练掌握完全平方公式是解题的关键.21、(1)甲单独完成需要20天,则乙单独完成需要30天;(2)选择乙比较划算【解析】(1)设甲单独完成需要天,则乙单独完成需要天,根据甲、乙两工程队合作完成一项工程,需要12天完成列方程求解即可.(2)设甲每天费用为元,则乙每天费用为元,根据甲、乙两工程队合作完成一项工程,工程费用共36000元列方程求解,然后计算出费用比较即可.【详解】解:(1)设甲单独完成需要天,则乙单独完成需要天,由题意得,解得天,经检验符合题意,所以乙:30天;(2)设甲每天费用为元,则乙每天费用为元;,解得;所以甲:1900元/天,乙:1100元/天;所以甲单独完成此项工程所需费用为:1900×20=38000元;乙单独完成此项工程所需费用为:1100×30=33000元;所以选择乙比较划算;【点睛】本题考查分式方程在工程问题中的应用以及一元一次方程的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.工程问题的基本关系式:工作总量=工作效率×工作时间.22、椰子的单价为25元,柠檬的单价为5元【解析】设原来椰子和柠檬的单价各是x元和y元,根据图中信息可得等量关系:2个椰子的价钱+10个柠檬的价钱=100元,2个椰子的价钱+0.9×10个柠檬的价钱=95,据此列方程组求解即可.【详解】设原来椰子和柠檬的单价各是x元和y元,根据题意,得,解得,答:椰子的单价为25元,柠檬的单价为5元.【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.23、(1);(2)【分析】(1)根据解分式方程的一般步骤解分式方程即可;(2)根据解分式方程的一

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论