版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024学年天津市河西区市级名校中考一模数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.汽车刹车后行驶的距离s(单位:m)关于行驶的时间t(单位:s)的函数解析式是s=20t﹣5t2,汽车刹车后停下来前进的距离是()A.10mB.20mC.30mD.40m2.抛物线y=3(x﹣2)2+5的顶点坐标是()A.(﹣2,5)B.(﹣2,﹣5)C.(2,5)D.(2,﹣5)3.如图是反比例函数(k为常数,k≠0)的图象,则一次函数的图象大致是()A. B. C. D.4.对于命题“如果∠1+∠1=90°,那么∠1≠∠1.”能说明它是假命题的是()A.∠1=50°,∠1=40° B.∠1=40°,∠1=50°C.∠1=30°,∠1=60° D.∠1=∠1=45°5.二元一次方程组的解为()A. B. C. D.6.在平面直角坐标系xOy中,二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,则下列结论正确的是()A.a<0,b<0,c>0B.﹣=1C.a+b+c<0D.关于x的方程ax2+bx+c=﹣1有两个不相等的实数根7.下列各数:1.414,,﹣,0,其中是无理数的为()A.1.414 B. C.﹣ D.08.如图,在平面直角坐标系xOy中,点A从出发,绕点O顺时针旋转一周,则点A不经过()A.点M B.点N C.点P D.点Q9.下列运算结果正确的是()A.a3+a4=a7 B.a4÷a3=a C.a3•a2=2a3 D.(a3)3=a610.已知抛物线y=x2-2mx-4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为()A.(1,-5) B.(3,-13) C.(2,-8) D.(4,-20)11.如图,已知AB∥CD,∠1=115°,∠2=65°,则∠C等于()A.40° B.45° C.50° D.60°12.点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2) B.(﹣1,﹣2) C.(1,﹣2) D.(2,﹣1)二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图所示,扇形OMN的圆心角为45°,正方形A1B1C1A2的边长为2,顶点A1,A2在线段OM上,顶点B1在弧MN上,顶点C1在线段ON上,在边A2C1上取点B2,以A2B2为边长继续作正方形A2B2C2A3,使得点C2在线段ON上,点A3在线段OM上,……,依次规律,继续作正方形,则A2018M=__________.14.解不等式组请结合题意填空,完成本题的解答.(1)解不等式①,得________;(2)解不等式②,得________;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集为___________.15.把一张长方形纸条按如图所示折叠后,若∠AOB′=70°,则∠B′OG=_____.16.如图,已知正方形ABCD的边长为4,⊙B的半径为2,点P是⊙B上的一个动点,则PD﹣PC的最大值为_____.17.如图的三角形纸片中,AB=8cm,BC=6cm,AC=5cm.沿过点B的直线折叠三角形,使点C落在AB边的点E处,折痕为BD.则△AED的周长为____cm.18.如图,四边形ABCD与四边形EFGH位似,位似中心点是点O,,则=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在△ABC中,AB=AC,若将△ABC绕点C顺时针旋转180°得到△EFC,连接AF、BE.(1)求证:四边形ABEF是平行四边形;(2)当∠ABC为多少度时,四边形ABEF为矩形?请说明理由.20.(6分)先化简:,再从、2、3中选择一个合适的数作为a的值代入求值.21.(6分)将一个等边三角形纸片AOB放置在平面直角坐标系中,点O(0,0),点B(6,0).点C、D分别在OB、AB边上,DC∥OA,CB=2.(I)如图①,将△DCB沿射线CB方向平移,得到△D′C′B′.当点C平移到OB的中点时,求点D′的坐标;(II)如图②,若边D′C′与AB的交点为M,边D′B′与∠ABB′的角平分线交于点N,当BB′多大时,四边形MBND′为菱形?并说明理由.(III)若将△DCB绕点B顺时针旋转,得到△D′C′B,连接AD′,边D′C′的中点为P,连接AP,当AP最大时,求点P的坐标及AD′的值.(直接写出结果即可).22.(8分)如图,AB是⊙O的直径,点C是AB的中点,连接AC并延长至点D,使CD=AC,点E是OB上一点,且OEEB求证:BD是⊙O的切线;(2)当OB=2时,求BH的长.23.(8分)如图1,在Rt△ABC中,∠C=90°,AC=BC=2,点D、E分别在边AC、AB上,AD=DE=AB,连接DE.将△ADE绕点A逆时针方向旋转,记旋转角为θ.(1)问题发现①当θ=0°时,=;②当θ=180°时,=.(2)拓展探究试判断:当0°≤θ<360°时,的大小有无变化?请仅就图2的情形给出证明;(3)问题解决①在旋转过程中,BE的最大值为;②当△ADE旋转至B、D、E三点共线时,线段CD的长为.24.(10分)如图,已知抛物线y=x2+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P是直线AC下方抛物线上的动点.(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.25.(10分)在一节数学活动课上,王老师将本班学生身高数据(精确到1厘米)出示给大家,要求同学们各自独立绘制一幅频数分布直方图,甲绘制的如图①所示,乙绘制的如图②所示,经王老师批改,甲绘制的图是正确的,乙在数据整理与绘图过程中均有个别错误.写出乙同学在数据整理或绘图过程中的错误(写出一个即可);甲同学在数据整理后若用扇形统计图表示,则159.5﹣164.5这一部分所对应的扇形圆心角的度数为;该班学生的身高数据的中位数是;假设身高在169.5﹣174.5范围的5名同学中,有2名女同学,班主任老师想在这5名同学中选出2名同学作为本班的正、副旗手,那么恰好选中一名男同学和一名女同学当正,副旗手的概率是多少?26.(12分)如图,已知点E,F分别是▱ABCD的对角线BD所在直线上的两点,BF=DE,连接AE,CF,求证:CF=AE,CF∥AE.27.(12分)如图,将等边△ABC绕点C顺时针旋转90°得到△EFC,∠ACE的平分线CD交EF于点D,连接AD、AF.求∠CFA度数;求证:AD∥BC.
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解题分析】
利用配方法求二次函数最值的方法解答即可.【题目详解】∵s=20t-5t2=-5(t-2)2+20,∴汽车刹车后到停下来前进了20m.故选B.【题目点拨】此题主要考查了利用配方法求最值的问题,根据已知得出顶点式是解题关键.2、C【解题分析】
根据二次函数的性质y=a(x﹣h)2+k的顶点坐标是(h,k)进行求解即可.【题目详解】∵抛物线解析式为y=3(x-2)2+5,∴二次函数图象的顶点坐标是(2,5),故选C.【题目点拨】本题考查了二次函数的性质,根据抛物线的顶点式,可确定抛物线的开口方向,顶点坐标(对称轴),最大(最小)值,增减性等.3、B【解题分析】根据图示知,反比例函数的图象位于第一、三象限,∴k>0,∴一次函数y=kx−k的图象与y轴的交点在y轴的负半轴,且该一次函数在定义域内是增函数,∴一次函数y=kx−k的图象经过第一、三、四象限;故选:B.4、D【解题分析】
能说明是假命题的反例就是能满足已知条件,但不满足结论的例子.【题目详解】“如果∠1+∠1=90°,那么∠1≠∠1.”能说明它是假命题为∠1=∠1=45°.故选:D.【题目点拨】考查了命题与定理的知识,理解能说明它是假命题的反例的含义是解决本题的关键.5、C【解题分析】
利用加减消元法解这个二元一次方程组.【题目详解】解:①-②2,得:y=-2,将y=-2代入②,得:2x-2=4,解得,x=3,所以原方程组的解是.故选C.【题目点拨】本题考查了解二元一次方程组和解一元一次方程等知识点,解此题的关键是把二元一次方程组转化成一元一次方程,题目比较典型,难度适中.6、D【解题分析】试题分析:根据图像可得:a<0,b>0,c<0,则A错误;,则B错误;当x=1时,y=0,即a+b+c=0,则C错误;当y=-1时有两个交点,即有两个不相等的实数根,则正确,故选D.7、B【解题分析】试题分析:根据无理数的定义可得是无理数.故答案选B.考点:无理数的定义.8、C【解题分析】
根据旋转的性质:对应点到旋转中心的距离相等,逐一判断即可.【题目详解】解:连接OA、OM、ON、OP,根据旋转的性质,点A的对应点到旋转中心的距离与OA的长度应相等根据网格线和勾股定理可得:OA=,OM=,ON=,OP=,OQ=5∵OA=OM=ON=OQ≠OP∴则点A不经过点P故选C.【题目点拨】此题考查的是旋转的性质和勾股定理,掌握旋转的性质:对应点到旋转中心的距离相等和用勾股定理求线段的长是解决此题的关键.9、B【解题分析】
分别根据同底数幂的乘法及除法法则、幂的乘方与积的乘方法则及合并同类项的法则对各选项进行逐一分析即可.【题目详解】A.a3+a4≠a7,不是同类项,不能合并,本选项错误;B.a4÷a3=a4-3=a;,本选项正确;C.a3•a2=a5;,本选项错误;D.(a3)3=a9,本选项错误.故选B【题目点拨】本题考查的是同底数幂的乘法及除法法则、幂的乘方与积的乘方法则及合并同类项的法则等知识,比较简单.10、C【解题分析】试题分析:=,∴点M(m,﹣m2﹣1),∴点M′(﹣m,m2+1),∴m2+2m2﹣1=m2+1.解得m=±2.∵m>0,∴m=2,∴M(2,﹣8).故选C.考点:二次函数的性质.11、C【解题分析】分析:根据两直线平行,同位角相等可得再根据三角形内角与外角的性质可得∠C的度数.详解:∵AB∥CD,∴∵∴故选C.点睛:考查平行线的性质和三角形外角的性质,三角形的一个外角等于与它不相邻的两个内角的和.12、A【解题分析】
关于y轴对称的点的坐标特征是纵坐标不变,横坐标变为相反数.【题目详解】点M(1,2)关于y轴对称点的坐标为(-1,2)【题目点拨】本题考查关于坐标轴对称的点的坐标特征,牢记关于坐标轴对称的点的性质是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、.【解题分析】
探究规律,利用规律即可解决问题.【题目详解】∵∠MON=45°,∴△C2B2C2为等腰直角三角形,∴C2B2=B2C2=A2B2.∵正方形A2B2C2A2的边长为2,∴OA3=AA3=A2B2=A2C2=2.OA2=4,OM=OB2=,同理,可得出:OAn=An-2An=An-2An-2=,∴OA2028=A2028A2027=,∴A2028M=2-.故答案为2-.【题目点拨】本题考查规律型问题,解题的关键是学会探究规律的方法,学会利用规律解决问题,属于中考常考题型.14、(1)x<1;(2)x≥﹣2;(1)见解析;(4)﹣2≤x<1;【解题分析】
(1)先移项,再合并同类项,求出不等式1的解集即可;(2)先去分母、移项,再合并同类项,求出不等式2的解集即可;(1)把两不等式的解集在数轴上表示出来即可;(4)根据数轴上不等式的解集,求出其公共部分即可.【题目详解】(1)解不等式①,得:x<1;(2)解不等式②,得:x≥﹣2;(1)把不等式①和②的解集在数轴上表示出来如下:(4)原不等式组的解集为:﹣2≤x<1,故答案为:x<1、x≥﹣2、﹣2≤x<1.【题目点拨】本题主要考查一元一次不等式组的解法及在数轴上的表示。15、55°【解题分析】
由翻折性质得,∠BOG=∠B′OG,根据邻补角定义可得.【题目详解】解:由翻折性质得,∠BOG=∠B′OG,∵∠AOB′+∠BOG+∠B′OG=180°,∴∠B′OG=(180°﹣∠AOB′)=(180°﹣70°)=55°.故答案为55°.【题目点拨】考核知识点:补角,折叠.16、1【解题分析】分析:由PD−PC=PD−PG≤DG,当点P在DG的延长线上时,PD−PC的值最大,最大值为DG=1.详解:在BC上取一点G,使得BG=1,如图,∵,,∴,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴,∴PG=PC,当点P在DG的延长线上时,PD−PC的值最大,最大值为DG==1.故答案为1点睛:本题考查圆综合题、正方形的性质、相似三角形的判定和性质等知识,解题的关键是学会构建相似三角形解决问题,学会用转化的思想思考问题,把问题转化为两点之间线段最短解决,题目比较难,属于中考压轴题.17、7【解题分析】
根据翻折变换的性质可得BE=BC,DE=CD,然后求出AE,再求出△ADE的周长=AC+AE.【题目详解】∵折叠这个三角形点C落在AB边上的点E处,折痕为BD,∴BE=BC,DE=CD,∴AE=AB-BE=AB-BC=8-6=2cm,∴△ADE的周长=AD+DE+AE,=AD+CD+AE,=AC+AE,=5+2,=7cm.故答案为:7.【题目点拨】本题考查了翻折变换的性质,翻折前后对应边相等,对应角相等.18、【解题分析】试题分析:∵四边形ABCD与四边形EFGH位似,位似中心点是点O,∴==,则===.故答案为.点睛:本题考查的是位似变换的性质,掌握位似图形与相似图形的关系、相似多边形的性质是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)证明见解析(2)当∠ABC=60°时,四边形ABEF为矩形【解题分析】
(1)根据旋转得出CA=CE,CB=CF,根据平行四边形的判定得出即可;(2)根据等边三角形的判定得出△ABC是等边三角形,求出AE=BF,根据矩形的判定得出即可.【题目详解】(1)∵将△ABC绕点C顺时针旋转180°得到△EFC,∴△ABC≌△EFC,∴CA=CE,CB=CF,∴四边形ABEF是平行四边形;(2)当∠ABC=60°时,四边形ABEF为矩形,理由是:∵∠ABC=60°,AB=AC,∴△ABC是等边三角形,∴AB=AC=BC.∵CA=CE,CB=CF,∴AE=BF.∵四边形ABEF是平行四边形,∴四边形ABEF是矩形.【题目点拨】本题考查了旋转的性质和矩形的判定、平行四边形的判定、等边三角形的性质和判定等知识点,能综合运用知识点进行推理是解答此题的关键.20、-1.【解题分析】
根据分式的加法和除法可以化简题目中的式子,然后在、2、3中选择一个使得原分式有意义的值代入化简后的式子即可解答本题.【题目详解】,当时,原式.故答案为:-1.【题目点拨】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.21、(Ⅰ)D′(3+,3);(Ⅱ)当BB'=时,四边形MBND'是菱形,理由见解析;(Ⅲ)P().【解题分析】
(Ⅰ)如图①中,作DH⊥BC于H.首先求出点D坐标,再求出CC′的长即可解决问题;(Ⅱ)当BB'=时,四边形MBND'是菱形.首先证明四边形MBND′是平行四边形,再证明BB′=BC′即可解决问题;(Ⅲ)在△ABP中,由三角形三边关系得,AP<AB+BP,推出当点A,B,P三点共线时,AP最大.【题目详解】(Ⅰ)如图①中,作DH⊥BC于H,∵△AOB是等边三角形,DC∥OA,∴∠DCB=∠AOB=60°,∠CDB=∠A=60°,∴△CDB是等边三角形,∵CB=2,DH⊥CB,∴CH=HB=,DH=3,∴D(6﹣,3),∵C′B=3,∴CC′=2﹣3,∴DD′=CC′=2﹣3,∴D′(3+,3).(Ⅱ)当BB'=时,四边形MBND'是菱形,理由:如图②中,∵△ABC是等边三角形,∴∠ABO=60°,∴∠ABB'=180°﹣∠ABO=120°,∵BN是∠ACC'的角平分线,∴∠NBB′'=∠ABB'=60°=∠D′C′B,∴D'C'∥BN,∵AB∥B′D′∴四边形MBND'是平行四边形,∵∠ME'C'=∠MCE'=60°,∠NCC'=∠NC'C=60°,∴△MC′B'和△NBB'是等边三角形,∴MC=CE',NC=CC',∵B'C'=2,∵四边形MBND'是菱形,∴BN=BM,∴BB'=B'C'=;(Ⅲ)如图连接BP,在△ABP中,由三角形三边关系得,AP<AB+BP,∴当点A,B,P三点共线时,AP最大,如图③中,在△D'BE'中,由P为D'E的中点,得AP⊥D'E',PD'=,∴CP=3,∴AP=6+3=9,在Rt△APD'中,由勾股定理得,AD'==2.此时P(,﹣).【题目点拨】此题是四边形综合题,主要考查了平行四边形的判定和性质,菱形的性质,平移和旋转的性质,等边三角形的判定和性质,勾股定理,解(2)的关键是四边形MCND'是平行四边形,解(3)的关键是判断出点A,C,P三点共线时,AP最大.22、(1)证明见解析;(2)BH=125【解题分析】
(1)先判断出∠AOC=90°,再判断出OC∥BD,即可得出结论;(2)先利用相似三角形求出BF,进而利用勾股定理求出AF,最后利用面积即可得出结论.【题目详解】(1)连接OC,∵AB是⊙O的直径,点C是AB的中点,∴∠AOC=90°,∵OA=OB,CD=AC,∴OC是△ABD是中位线,∴OC∥BD,∴∠ABD=∠AOC=90°,∴AB⊥BD,∵点B在⊙O上,∴BD是⊙O的切线;(2)由(1)知,OC∥BD,∴△OCE∽△BFE,∴OCBF∵OB=2,∴OC=OB=2,AB=4,OEEB∴2BF∴BF=3,在Rt△ABF中,∠ABF=90°,根据勾股定理得,AF=5,∵S△ABF=12AB•BF=1∴AB•BF=AF•BH,∴4×3=5BH,∴BH=125【题目点拨】此题主要考查了切线的判定和性质,三角形中位线的判定和性质,相似三角形的判定和性质,求出BF=3是解本题的关键.23、(1)①;(2)无变化,证明见解析;(3)①2+2+1或﹣1.【解题分析】
(1)①先判断出DE∥CB,进而得出比例式,代值即可得出结论;②先得出DE∥BC,即可得出,,再用比例的性质即可得出结论;(2)先∠CAD=∠BAE,进而判断出△ADC∽△AEB即可得出结论;(3)分点D在BE的延长线上和点D在BE上,先利用勾股定理求出BD,再借助(2)结论即可得出CD.【题目详解】解:(1)①当θ=0°时,在Rt△ABC中,AC=BC=2,∴∠A=∠B=45°,AB=2,∵AD=DE=AB=,∴∠AED=∠A=45°,∴∠ADE=90°,∴DE∥CB,∴,∴,∴,故答案为,②当θ=180°时,如图1,∵DE∥BC,∴,∴,即:,∴,故答案为;(2)当0°≤θ<360°时,的大小没有变化,理由:∵∠CAB=∠DAE,∴∠CAD=∠BAE,∵,∴△ADC∽△AEB,∴;(3)①当点E在BA的延长线时,BE最大,在Rt△ADE中,AE=AD=2,∴BE最大=AB+AE=2+2;②如图2,当点E在BD上时,∵∠ADE=90°,∴∠ADB=90°,在Rt△ADB中,AB=2,AD=,根据勾股定理得,BD==,∴BE=BD+DE=+,由(2)知,,∴CD=+1,如图3,当点D在BE的延长线上时,在Rt△ADB中,AD=,AB=2,根据勾股定理得,BD==,∴BE=BD﹣DE=﹣,由(2)知,,∴CD=﹣1.故答案为+1或﹣1.【题目点拨】此题是相似形综合题,主要考查了等腰直角三角形的性质和判定,勾股定理,相似三角形的判定和性质,比例的基本性质及分类讨论的数学思想,解(1)的关键是得出DE∥BC,解(2)的关键是判断出△ADC∽△AEB,解(3)关键是作出图形求出BD,是一道中等难度的题目.24、(1)抛物线的解析式为y=x2-2x+1,(2)四边形AECP的面积的最大值是,点P(,﹣);(3)Q(4,1)或(-3,1).【解题分析】
(1)把点A,B的坐标代入抛物线的解析式中,求b,c;(2)设P(m,m2−2m+1),根据S四边形AECP=S△AEC+S△APC,把S四边形AECP用含m式子表示,根据二次函数的性质求解;(3)设Q(t,1),分别求出点A,B,C,P的坐标,求出AB,BC,CA;用含t的式子表示出PQ,CQ,判断出∠BAC=∠PCA=45°,则要分两种情况讨论,根据相似三角形的对应边成比例求t.【题目详解】解:(1)将A(0,1),B(9,10)代入函数解析式得:×81+9b+c=10,c=1,解得b=−2,c=1,所以抛物线的解析式y=x2−2x+1;(2)∵AC∥x轴,A(0,1),∴x2−2x+1=1,解得x1=6,x2=0(舍),即C点坐标为(6,1),∵点A(0,1),点B(9,10),∴直线AB的解析式为y=x+1,设P(m,m2−2m+1),∴E(m,m+1),∴PE=m+1−(m2−2m+1)=−m2+3m.∵AC⊥PE,AC=6,∴S四边形AECP=S△AEC+S△APC=AC⋅EF+AC⋅PF=AC⋅(EF+PF)=AC⋅EP=×6(−m2+3m)=−m2+9m.∵0<m<6,∴当m=时,四边形AECP的面积最大值是,此时P();(3)∵y=x2−2x+1=(x−3)2−2,P(3,−2),PF=yF−yp=3,CF=xF−xC=3,∴PF=CF,∴∠PCF=45∘,同理可得∠EAF=45∘,∴∠PCF=∠EAF,∴在直线AC上存在满足条件的点Q,设Q(t,1)且AB=,AC=6,CP=,∵以C,P,Q为顶点的三角形与△ABC相似,①当△CPQ∽△ABC时,CQ:AC=CP:AB,(6−t):6=,解得t=4,所以Q(4,1);②当△CQP∽△ABC时,CQ:AB=CP:AC,(6−t)6,解得t=−3,所以Q(−3,1).综上所述:当点P为抛物线的顶点时,在直线AC上存在点Q,使得以C,P,Q为顶点的三角形与△ABC相似,Q点的坐标为(4,1)或(−3,1).【题目点拨】本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用面积的和差得出二次函数,又利用了二次函数的性质,平行于坐标轴的直线上两点间的距离是较大的坐标减较小的坐标;解(3)的关键是利用相似三角形的性质的出关于CQ的比例,要分类讨论,以防遗漏.25、(1)乙在整理数据时漏了一个数据,它在169.5﹣﹣174.5内;(答案不唯一);(2)120°;(3)160或1;(4).【解题分析】
(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度企业销售培训劳动合同范本(2024版)
- 人教版小学语文六年级上册教案全册教案
- 2024年度电气设备防雷保护系统升级改造合同
- 《上期期末家长会》课件
- 2024年度大型货车租赁安全管理合同2篇
- 2024中国移动福建公司招聘易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国电建集团昆明勘测设计研究院限公司招聘100人易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国电信北京公司招聘易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国交建招聘中交天航滨海公司专业人才71人易考易错模拟试题(共500题)试卷后附参考答案
- 2024东海航空深圳宝安区宝安机场招聘效益支持专员(广东)易考易错模拟试题(共500题)试卷后附参考答案
- 刮泥机出厂检测调试报告
- 工业管道基础知识PPT课件
- GB∕T 29639-2020 生产经营单位生产安全事故应急预案编制导则
- 运动处方知识点
- 部编版二年级语文上册第七单元备课教学设计
- 英语口语绕口令Englishtonguetwisters
- 《八字新大陆》教材内部辅导讲义
- 轴心受压构件的计算长度系数
- (完整版)《加油站委托管理合同》(标准版)
- 深圳市建设工程施工许可(提前开工核准)申请表
- 纸箱抗压计算
评论
0/150
提交评论