![2024届浙江省长兴县古城中学数学八上期末学业水平测试试题含解析_第1页](http://file4.renrendoc.com/view10/M01/1C/03/wKhkGWWKBgWASMBuAAHPOGyVz7k600.jpg)
![2024届浙江省长兴县古城中学数学八上期末学业水平测试试题含解析_第2页](http://file4.renrendoc.com/view10/M01/1C/03/wKhkGWWKBgWASMBuAAHPOGyVz7k6002.jpg)
![2024届浙江省长兴县古城中学数学八上期末学业水平测试试题含解析_第3页](http://file4.renrendoc.com/view10/M01/1C/03/wKhkGWWKBgWASMBuAAHPOGyVz7k6003.jpg)
![2024届浙江省长兴县古城中学数学八上期末学业水平测试试题含解析_第4页](http://file4.renrendoc.com/view10/M01/1C/03/wKhkGWWKBgWASMBuAAHPOGyVz7k6004.jpg)
![2024届浙江省长兴县古城中学数学八上期末学业水平测试试题含解析_第5页](http://file4.renrendoc.com/view10/M01/1C/03/wKhkGWWKBgWASMBuAAHPOGyVz7k6005.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届浙江省长兴县古城中学数学八上期末学业水平测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,将长方形的四个角向内翻折后,恰好拼成一个无缝隙无重叠的四边形,已知,,则边的长是()A. B. C. D.2.计算=().A.6x B. C.30x D.3.在﹣,3.14,0.3131131113…,,﹣,中无理数的个数有()A.2个 B.3个 C.4个 D.5个4.二元一次方程组的解是()A. B. C. D.5.已知,点在的内部,点与点关于对称,点与点关于对称,则以点,,为顶点的三角形是()A.直角三角形 B.钝角三角形 C.等腰三角形 D.等边三角形6.若一个多边形的内角和是1080°,则此多边形的边数是()A.十一 B.十 C.八 D.六7.一个多边形的外角和等于它的内角和的倍,那么这个多边形从一个顶点引对角线的条数是()条A.3 B.4 C.5 D.68.甲、乙两队参加了“端午情,龙舟韵”赛龙舟比赛,两队在比赛时的路程(米)与时间(秒)之间的函数图象如图所示,请你根据图象判断,下列说法正确的是()A.乙队率先到达终点B.甲队比乙队多走了米C.在秒时,两队所走路程相等D.从出发到秒的时间段内,乙队的速度慢9.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()A.6 B.8 C.10 D.1210.如图,为估计池塘岸边A、B的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A、B间的距离不可能是()A.20米 B.15米 C.10米 D.5米二、填空题(每小题3分,共24分)11.如图,由两个直角三角形和三个正方形组成的图形,已知,其中阴影部分面积是_____________平方单位.12.因式分解:2a2﹣8=.13.如图是按以下步骤作图:(1)在中,分别以点和点为圆心,大于的长为半径画弧,两弧相交于两点;(2)作直线交于点;(3)连接.若,,则的度数为__________.14.因式分解:x2﹣49=________.15.请先观察下列算式,再填空:32﹣12=8×1,52﹣32=8×2,72﹣52=8×3,92﹣72=8×4…通过观察归纳,写出第2020个算式是:_____.16.在平面直角坐标系中,若点A的坐标为(8,4),则点A到y轴的距离为_____.17.已知P(a,b),且ab<0,则点P在第_________象限.18.11的平方根是__________.三、解答题(共66分)19.(10分)计算.(1)(2).20.(6分)在一棵树的10米高处有两只猴子,其中一只猴子爬下树走到离树20米的池塘,另一只猴子爬到树顶后直接跃向池塘的处,如果两只猴子所经过距离相等,试问这棵树有多高.21.(6分)先化简再求值:,其中22.(8分)已知:如图,点是的中点,于,于,,求证:.23.(8分)已知a是的整数部分,b是的小数部分,那么的值是__.24.(8分)如图,直线l1∥l2,直线l3交直线l1于点B,交直线l2于点D,O是线段BD的中点.过点B作BA⊥l2于点A,过点D作DC⊥l1于点C,E是线段BD上一动点(不与点B,D重合),点E关于直线AB,AD的对称点分别为P,Q,射线PO与射线QD相交于点N,连接PQ.(1)求证:点A是PQ的中点;(2)请判断线段QN与线段BD是否相等,并说明理由.25.(10分)如图,与均为等腰直角三角形,(1)如图1,点在上,点与重合,为线段的中点,则线段与的数量关系是,与的位置是.(2)如图2,在图1的基础上,将绕点顺时针旋转到如图2的位置,其中在一条直线上,为线段的中点,则线段与是否存在某种确定的数量关系和位置关系?证明你的结论.(3)若绕点旋转任意一个角度到如图3的位置,为线段的中点,连接、,请你完成图3,猜想线段与的关系,并证明你的结论.26.(10分)我们学过的分解因式的方法有提取公因式法、公式法及十字相乘法,但有很多的多项式只用上述方法就无法分解,如,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了.过程为:;这种分解因式的方法叫分组分解法.利用这种方法解决下列问题:(1)分解因式:(2)三边,,满足,判断的形状.
参考答案一、选择题(每小题3分,共30分)1、C【分析】利用三个角是直角的四边形是矩形,易证四边形EFGH为矩形,那么由折叠可得HF的长及为AD的长.【详解】解:∵∠HEM=∠AEH,∠BEF=∠FEM∴∠HEF=∠HEM+∠FEM=,同理可得:∠EHG=∠HGF=∠EFG=90°,∴四边形EFGH为矩形,∵AD=AH+HD=HM+MF=HFHF=,故答案为:C.【点睛】本题考查了旋转、折叠、勾股定理等知识,解题的关键是将AD转化为HF.2、B【解析】根据分式的性质,分子分母约去6x即可得出答案.【详解】解:=,故选B.【点睛】此题考查了分式的性质,熟练掌握分式的性质是解题的关键.3、B【分析】根据无理数的概念即可判断.【详解】解:﹣,3.14,为有理数;,,是无理数,共有3个.故选:B.【点睛】本题考查了对无理数的定义.解题的关键是掌握无理数的定义:无理数是指无限不循环小数.注意:无理数包括三方面的数:①含的,②开方开不尽的根式,③一些有规律的数,根据以上内容判断即可.4、B【解析】分析:方程组利用加减消元法求出解即可.详解:,①+②得:2x=0,解得:x=0,把x=0代入①得:y=2,则方程组的解为,故选B.点睛:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.5、D【分析】根据轴对称的性质,可得、,再利用等边三角形的判定即可得解.【详解】解:根据已知条件画出图形,如图:∵点和点关于对称,点和点关于对称∴,,,∵∴,∴是等边三角形,即以点,,为顶点的三角形是等边三角形.故选:D【点睛】本题考查了轴对称的性质和等边三角形的判定,熟练掌握相关知识点是解题的关键.6、C【分析】n边形内角和公式为:°,据此进一步求解即可.【详解】设该多边形的边数为n,则:°=1080°,解得:,∴该多边形的边数为8,故选:C.【点睛】本题主要考查了多边形的内角和公式,熟练掌握相关公式是解题关键.7、A【分析】设这个多边形有n条边,由题意得方程(n-2)×180=360×2,解方程可得到n的值,然后根据n边形从一个顶点出发可引出(n-3)条对角线可得答案.【详解】设这个多边形有n条边,由题意得:(n-2)×180=360×2,解得;n=6,从这个多边形的一个顶点出发的对角线的条数是6-3=3,故答案为:A.【点睛】此题主要考查了多边形的内角和外角,以及对角线,关键是掌握多边形的内角和公式.8、C【分析】根据函数图形,结合选项进行判断,即可得到答案.【详解】解:、由函数图象可知,甲走完全程需要秒,乙走完全程需要秒,甲队率先到达终点,本选项错误;、由函数图象可知,甲、乙两队都走了米,路程相同,本选项错误;、由函数图象可知,在秒时,两队所走路程相等,均为米,本选项正确;、由函数图象可知,从出发到秒的时间段内,甲队的速度慢,本选项错误;故选.【点睛】本题考查函数图象,解题的关键是读懂函数图象的信息.9、C【分析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD的长为CM+MD的最小值,由此即可得出结论.【详解】解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×4×AD=16,解得AD=8,∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+BC=8+×4=8+2=1.故选:C.【点睛】本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.10、D【解析】∵5<AB<25,∴A、B间的距离不可能是5,故选D.二、填空题(每小题3分,共24分)11、49【分析】先计算出BC的长,再由勾股定理求出阴影部分的面积即可.【详解】∵∠ACB=90,,∴,∴阴影部分的面积=,故答案为:49.【点睛】此题考查勾股定理,能利用根据直角三角形计算得到所需的边长,题中根据勾股定理的图形得到阴影部分面积等于BC的平方是解题的关键.12、2(a+2)(a-2).【详解】2a2-8=2(a2-4)=2(a+2)(a-2).故答案为2(a+2)(a-2)【点睛】考点:因式分解.13、42°【分析】由作图步骤可知MD是线段AB的垂直平分线,易得,利用三角形内角和定理可得的度数.【详解】解:由作图步骤可知MD是线段AB的垂直平分线,在中,故答案为:42°【点睛】本题考查了线段垂直平分线的性质及等腰三角形的性质,正确理解题中所给的作图步骤是解题的关键.14、(x﹣7)(x+7)【分析】因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式,完全平方公式)、三检查(彻底分解)【详解】解:可以直接用平方差分解为:﹣49=(x﹣7)(x+7).故答案为:(x﹣7)(x+7)15、40412﹣40392=8×2020【分析】观察所给的算式,左边是两个数的平方差的形式,右边是8与一个数的乘积,归纳类推出一般规律:第n个算式的左边是,右边是8n,据此写出第2020个算式是多少即可.【详解】通过观察已知式子得:第1个算式,即第2个算式,即第3个算式,即第4个算式,即归纳类推得:第n个算式是则第2020个算式是整理得故答案为:.【点睛】本题考查了实数运算的规律类推题,依据已知算式,归纳类推出一般规律是解题关键.16、1【分析】根据点到y轴的距离等于横坐标的绝对值可以得解.【详解】解:∵点A的坐标为(1,4),∴点A到y轴的距离为1.故答案为:1.【点睛】本题考查了点的坐标与点到坐标轴的距离的关系,理解掌握这种关系是解答关键.17、二,四【分析】先根据ab<0确定a、b的正负情况,然后根据各象限点的坐标特点即可解答.【详解】解:∵ab<0∴a>0,b<0或b>0,a<0∴点P在第二、四象限.故答案为二,四.【点睛】本题主要考查了各象限点的坐标特点,掌握第一象限(+,+)、第二象限(-,+)、第三象限(-,-)、第四象限(+,-)是解答本题的关键.18、【解析】根据平方根的定义即可求解.【详解】解:11的平方根为.【点睛】本题考查了平方根的定义,解题的关键在于平方根和算术平方根的区别和联系.三、解答题(共66分)19、(1);(2)1【分析】(1)直接利用二次根式的性质化简得出答案;(2)直接利用二次根式的性质、立方根的性质分别化简得出答案.【详解】(1)原式=10﹣﹣6=;(2)原式=1﹣2+2=1.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.20、树高为15m.【分析】设树高BC为xm,则可用x分别表示出AC,利用勾股定理可得到关于x的方程,可求得x的值.【详解】解:设树高BC为xm,则CD=x-10,则题意可知BD+AB=10+20=30,∴AC=30-CD=30-(x-10)=40-x,∵△ABC为直角三角形,∴AC2=AB2+BC2,即(40-x)2=202+x2,解得x=15,即树高为15m,【点睛】本题主要考查勾股定理的应用,用树的高度表示出AC,利用勾股定理得到方程是解题的关键.21、,12.【分析】先利用完全平方公式、多项式乘法去括号,再通过合并同类项进行化简,最后将x和y的值代入即可.【详解】原式将代入得:原式.【点睛】本题考查了多项式的乘法、整式的加减(合并同类项),熟记运算法则和公式是解题关键.22、详见解析【分析】根据AAS证明,再根据全等三角形的性质得到BE=DC.【详解】∵是的中点,∴,∵,∴,在和中∴(AAS),∴.【点睛】考查了全等三角形的判定及性质,注意掌握①判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL;②全等三角形的对应边对应角分别相等.23、1.【分析】直接利用的取值范围,得出的值,进而求出答案.【详解】,,,.故答案为:1.【点睛】本题主要考查了估算无理数的大小,正确得出a,b的值是解题关键.24、(1)见解析;(2)相等,理由见解析【分析】(1)由点E关于直线AB,AD的对称点分别为P,Q,连接AE,PE,QE,根据对称点的性质得出对应的边和对应的角相等,即AP=AE,AQ=AE,∠1=∠2,∠3=∠4,再根据垂直的性质得出∠2+∠3=90°,∠1+∠2+∠3+∠4=180°,即P,A,Q三点在同一条直线上,根据中点的定义得出结论.(2)连接PB,根据对称的性质得到BP=BE,DQ=DE,∠5=∠6,∠7=∠8,根据垂直的性质∠7+∠9=90°,∠8+∠10=90°,得∠9=∠10,由平行的性质得∠6=∠9从而得到∠OBP=∠ODN,易证明△BOP≌△DON得到BP=DN,BE=DN,等量转换得到QN=BD.【详解】解:(1)连接AE,PE,QE,如图∵点E关于直线AB,AD的对称点分别为P,Q∴AP=AE,AQ=AE,∠1=∠2,∠3=∠4,∴AP=AQ∵AB⊥l2,∴∠2+∠3=90°∴∠1+∠2+∠3+∠4=180°∴P,A,Q三点在同一条直线上∴点A是PQ的中点.(2)QN=BD,理由如下:连接PB∵点E关于直线AB,AD的对称点分别为P,Q∴BP=BE,DQ=DE,∠5=∠6,∠7=∠8∵l1//l2,DC⊥l1,∴DC⊥l2,∴∠7+∠9=90°,∴∠8+∠10=90°,∴∠9=∠10又∵AB⊥l2,DC⊥l2,∴AB//CD∴∠6=∠9,∴∠5+∠6=∠9+∠10即∠OBP=∠ODN∵O是线段BD的中点,∴OB=OD在△BOP和△DON中∴△BOP≌△DON∴BP=DN,∴BE=DN∴QN=DQ+DN=DE+BE=BD【点睛】本题考查了对称点,平行线的性质和判定,三角形全等的性质和判定,解题的关键是学会添加常用的辅助线构造全等三角形解决问题.25、(1)EF=FC,EF⊥FC;(2)EF=FC,EF⊥FC,证明见解析;(3)EF=FC,EF⊥FC,证明见解析;
【分析】(1)根据已知得出△EFC是等腰直角三角形即可.
(2)延长线段CF到M,使FM=CF,连接DM、ME、EC,利用SAS证△BFC≌△DFM,进而可以证明△MDE≌△CAE,即可得证;
(3)延长线段CF到M,使FM=CF,连接DM、ME、EC,利用SAS证△BFC≌△DFM,进而可以证明△MDE≌△CAE,即可得证;.【详解】解:(1)∵与均为等腰直角三角形,∴,∴BE=EC∵为线段的中点,;故答案为:EF=FC,EF⊥FC
(2)存在EF=FC,EF⊥FC,证明如下:延长CF到M,使FM=CF,连接DM、ME、EC∵为线段的中点,∴DF=FB,
∵FC=FM,∠BFC=∠DFM,DF=FB,
∴△BFC≌△DFM,
∴DM=B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年铝合金精密模锻件合作协议书
- 2025年度商铺租用承诺书规范版4篇
- 行业趋势与发展目标分析计划
- 师生互动促进学习效果的研究计划
- 新年职场新风格与工匠精神计划
- 如何利用社群效应推动品牌计划
- 班主任的心理情感辅导计划
- 企业财务战略的执行方法计划
- 仓库持续改进的必要性与方法计划
- 2025年商务、清洗服务项目建议书
- CRPS电源设计向导 CRPS Design Guide r-2017
- 5000只淮山羊和波尔山羊杂交良种养殖场建设项目可行性研究报告
- GB/T 5534-2008动植物油脂皂化值的测定
- GB/T 12771-2019流体输送用不锈钢焊接钢管
- 测量管理体系内审检查表
- 工程验收及移交管理方案
- 心脏手术麻醉的一般流程课件
- 图片编辑概述课件
- 2023年岳阳职业技术学院单招职业技能考试笔试题库及答案解析
- 信号与系统复习题及答案
- 中级建构筑物消防员理论综合模拟题01原题
评论
0/150
提交评论