2024届浙江省杭州市景成实验中学八上数学期末考试试题含解析_第1页
2024届浙江省杭州市景成实验中学八上数学期末考试试题含解析_第2页
2024届浙江省杭州市景成实验中学八上数学期末考试试题含解析_第3页
2024届浙江省杭州市景成实验中学八上数学期末考试试题含解析_第4页
2024届浙江省杭州市景成实验中学八上数学期末考试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届浙江省杭州市景成实验中学八上数学期末考试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.在,,,,中,分式的个数是()A.1 B.2 C.3 D.42.若分式的值为零,那么x的值为A.或 B. C. D.3.如图,把一个含30°角的直角三角尺的直角顶点放在直尺的一边上,如果∠1=20°,那么∠2的度数为()A.20° B.50° C.60° D.70°4.已知关于的分式方程的解是非负数,则的取值范圈是()A. B. C.且 D.或5.下列各式从左到右变形正确的是()A.B.C.D.6.下列从左边到右边的变形,是因式分解的是()A.y2﹣2y+4=(y﹣2)2B.10x2﹣5x=5x(2x﹣1)C.a(x+y)=ax+ayD.t2﹣16+3t=(t+4)(t﹣4)+3t7.一个三角形的两边长分别为和,且第三边长为整数,这样的三角形的周长最大值是()A. B. C. D.8.下列图形中,对称轴最多的图形是()A. B. C. D.9.甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均成绩都相同,方差分别是S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,则射箭成绩最稳定的是()A.甲 B.乙 C.丙 D.丁10.如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为()A. B.4 C. D.11.如图,直线y=kx(k为常数,k≠0)经过点A,若B是该直线上一点,则点B的坐标可能是()A.(-2,-1) B.(-4,-2) C.(-2,-4) D.(6,3)12.不能使两个直角三角形全等的条件是().A.一条直角边及其对角对应相等 B.斜边和两条直角边对应相等C.斜边和一条直角边对应相等 D.两个锐角对应相等二、填空题(每题4分,共24分)13.如果是一个完全平方式,则的值是_________.14.如图,点的坐标为,点在直线上运动,当线段最短时,点的坐标为__________.15.某班数学兴趣小组对不等式组,讨论得到以下结论:①若a=5,则不等式组的解集为3<x≤5;②若a=2,则不等式组无解;③若不等式组无解,则a的取值范围为a<3;④若不等式组只有两个整数解,则a的值可以为5.1,其中,正确的结论的序号是____.16.如图,已知,,,则__________.17.若代数式x2+6x+8可化为(x+h)2+k的形式,则h=_____,k=_____.18.在平行四边形中,,,,那么的取值范围是______.三、解答题(共78分)19.(8分)如图,点、是线段上的点,,,垂足分别是点和点,,,求证:.20.(8分)甲、乙两人分别从A,B两地同时出发,匀速相向而行.甲的速度大于乙的速度,甲到达B地后,乙继续前行.设出发xh后,两人相距ykm,图中折线表示从两人出发至乙到达A地的过程中y与x之间的函数关系.(1)根据图中信息,求出点Q的坐标,并说明它的实际意义;(2)求甲、乙两人的速度.21.(8分)阅读与思考:整式乘法与因式分解是方向相反的变形,由(x+p)(x+q)=x2+(p+q)x+pq得,x2+(p+q)x+pq=(x+p)(x+q);利用这个式子可以将某些二次项系数是1的二次三项式分解因式,例如:将式子x2﹣x﹣6分解因式.这个式子的常数项﹣6=2×(﹣3),一次项系数﹣1=2+(﹣3),这个过程可用十字相乘的形式形象地表示:先分解常数项,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求代数和,使其等于一次项系数.如图所示.这种分解二次三项式的方法叫“十字相乘法”,请同学们认真观察,分析理解后,解答下列问题.(1)分解因式:x2+7x﹣1.(2)填空:若x2+px﹣8可分解为两个一次因式的积,则整数p的所有可能值是.22.(10分)如图所示,在所给正方形网格图中完成下列各题:(用直尺画图,保留痕迹)(1)求出格点△ABC(顶点均在格点上)的面积;(2)画出格点△ABC关于直线DE对称的;(3)在DE上画出点Q,使△QAB的周长最小.23.(10分)直角坐标系中,A,B,P的位置如图所示,按要求完成下列各题:(1)将线段AB向左平移5个单位,再向下平移1个单位,画出平移后的线段A1B1;(2)将线段AB绕点P顺时针旋转90°,画出旋转后的线段A2B2;(1)作出线段AB关于点P成中心对称的线段A1B1.24.(10分)如图,在△ABC中,∠BAC=90°,∠B=50°,AE,CF是角平分线,它们相交于为O,AD是高,求∠BAD和∠AOC的度数.25.(12分)已知:如图,,//,,且点、、、在同一条直线上.求证://.26.甲、乙两个工程队完成某项工程,首先是甲队单独做了10天,然后乙队加入合作,完成剩下的全部工程,设工程总量为单位1,工程进度满足如图所示的函数关系.(1)求甲、乙两队合作完成剩下的全部工程时,工作量y与天数x间的函数关系式;(2)求实际完成这项工程所用的时间比由甲队单独完成这项工程所需时间少多少天?

参考答案一、选择题(每题4分,共48分)1、C【解析】解:,,的分母中均不含有字母,因此它们是整式,而不是分式.,,分母中含有字母,因此是分式.故选C.2、C【分析】根据分式的值为0的条件分子为0,分母不能为0,得到关于x的方程以及不等式,求解即可得出答案.【详解】分式的值为零,,,解得:,故选C.【点睛】本题考查了分式值为0的条件,熟练掌握分式值为0的条件是解题的关键.3、B【分析】根据三角形的外角性质得出∠2=∠A+∠1,代入求出即可.【详解】解:如图:∠2=∠A+∠1=30°+20°=50°,故选:B.【点睛】本题考查了三角形的外角性质,能根据三角形的外角性质得出∠2=∠A+∠1是解此题的关键.4、C【分析】先解分式方程,再根据解是非负数可得不等式,再解不等式可得.【详解】方程两边乘以(x-1)得所以因为方程的解是非负数所以,且所以且故选:C【点睛】考核知识点:解分式方程.去分母,解分式方程,根据方程的解的情况列出不等式是关键.5、B【分析】根据分式的基本性质,依次分析各个选项,选出正确的选项即可.【详解】A.分式的分子和分母同时乘以10,应得,即A不正确,B.,故选项B正确,C.分式的分子和分母同时减去一个数,与原分式不相等,即C项不合题意,D.不能化简,故选项D不正确.故选:B.【点睛】此题考察分式的基本性质,分式的分子和分母需同时乘以(或除以)同一个不为0的整式,分式的值不变.不能在分子和分母中加减同一个整式,这是错误的.6、B【解析】根据因式分解的意义,可得答案.【详解】A.分解不正确,故A不符合题意;B.把一个多项式转化成几个整式积的形式,故B符合题意;C.是整式的乘法,故C不符合题意;D.没把一个多项式转化成几个整式积的形式,故D不符合题意.故选B.【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.7、C【分析】根据三角形的三边关系求出第三边长的取值范围,再结合已知条件求出第三边长的最大整数值,即可求出三角形的周长最大值.【详解】解:∵一个三角形的两边长分别为和∴5-2<第三边长<5+2解得:3<第三边长<7∵第三边长为整数,∴第三边长可以为4、5、6∴第三边长的最大值为6∴三角形的周长最大值为2+5+6=13故选C.【点睛】此题考查的是根据三角形的两边长,求第三边的取值范围和求三角形的周长,掌握三角形的三边关系和三角形的周长公式是解决此题的关键.8、A【分析】先根据轴对称图形的定义确定各选项图形的对称轴条数,然后比较即可选出对称轴条数最多的图形.【详解】解:A、圆有无数条对称轴;

B、正方形有4条对称轴;

C、该图形有3条对称轴;

D、长方形有2条对称轴;

故选:A.【点睛】本题考查了轴对称图形的概念,即在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.9、D【详解】∵射箭成绩的平均成绩都相同,方差分别是S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,∴S2甲>S2乙>S2丙>S2丁,∴射箭成绩最稳定的是丁;故选D.10、B【分析】求出AD=BD,根据∠FBD+∠C=90°,∠CAD+∠C=90°,推出∠FBD=∠CAD,根据ASA证△FBD≌△CAD,推出CD=DF即可.【详解】解:∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEB=∠ADC=90°,∴∠EAF+∠AFE=90°,∠FBD+∠BFD=90°,∵∠AFE=∠BFD,∴∠EAF=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABC,∴AD=BD,在△ADC和△BDF中,∴△ADC≌△BDF,∴DF=CD=4,故选:B.【点睛】此题主要考查了全等三角形的判定,关键是找出能使三角形全等的条件.11、C【分析】先根据点A的坐标求出k的值,从而可得直线的解析式,再逐项判断即可.【详解】由平面直角坐标系得:点A的坐标为将代入直线得:,解得因此,直线的解析式为A、令,代入直线的解析式得,则点不符题意B、令,代入直线的解析式得,则点不符题意C、令,代入直线的解析式得,则点符合题意D、令,代入直线的解析式得,则点不符题意故选:C.【点睛】本题考查了正比例函数的图象与性质,依据图象求出直线的解析式是解题关键.12、D【解析】根据各选项的已知条件,结合直角三角形全等的判定方法,对选项逐一验证即可得出答案.【详解】解:A、符合AAS,正确;

B、符合SSS,正确;

C、符合HL,正确;

D、因为判定三角形全等必须有边的参与,错误.

故选:D.【点睛】本题考查直角三角形全等的判定方法,判定两个直角三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.二、填空题(每题4分,共24分)13、1或-1【分析】首末两项是2x和3这两个数的平方,那么中间一项为加上或减去2x和3积的2倍.【详解】解:∵是一个完全平方式,

∴此式是2x与3和的平方,即可得出-a的值,

∴(2x±3)2=4x2±1x+9,

∴-a=±1,

∴a=±1.

故答案为:1或-1.【点睛】此题主要考查了完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式,注意积的2倍的符号,避免漏解.14、【分析】当PB垂直于直线时,线段最短,此时会构造一个等腰三角形,利用等腰三角形的性质即可求解.【详解】解:如图,当PB垂直于直线时线段最短,设直线与x轴交于点A,则A(-4,0),当时,为等腰直角三角形,作轴于C,则易得C(-1,0),将代入即可求得,;故答案为:.【点睛】本题考查的是垂线段最短以及等腰直角三角形的性质,这里根据题意正确添加辅助线即可轻松解题.15、①,②,④.【解析】(1)把a=5代入不等式组,解不等式组的解集与选项解集对照即可解答;(2)把a=2代入不等式组,解不等式组,根据大大小小无解从而确定改选项正确;(3)根据不等式组无解,确定a的取值范围为a≤3;(4)根据不等式组只有两个整数解,可知这两个整数解为:x=3,x=4,所以x的取值范围是:3<x≤5.1.【详解】解:①a=5,则不等式组的解集为3<x≤5,所以①正确;②a=2,x的取值范围是x>3和x≤2,无解,所以②正确;③不等式组无解,则a的取值范围为a≤3,而不是a<3,所以③错误;④若a=5.1则,x的取值范围是:3<x≤5.1,整数解为:x=4,x=5,共有两个解.故答案为①,②,④.【点睛】本题考查一元一次不等式的解法、整数解及解集判定,解题关键是熟练掌握同大取大、同小取小、大小小大中间找、大大小小找不到.16、20°【分析】由,得∠AEC=,结合,即可得到答案.【详解】∵,,∴∠AEC=,∵∠1+∠AEC+∠C=180°,∴∠C=180°-130°-30°=20°.故答案是:20°.【点睛】本题主要考查平行线的性质定理和三角形内角和定理,掌握平行线的性质定理和三角形内角和定理是解题的关键.17、3,﹣1.【分析】二次项系数为1,则常数项是一次项系数的一半的平方即可求解.【详解】解:x2+6x+8=x2+6x+9﹣1=(x+3)2﹣1,则h=3,k=﹣1.故答案为:3,﹣1.【点睛】本题考查配方法的应用,解题的关键是掌握配方的方法和完全平方公式的结构.18、2<a<8.【分析】根据平行四边形性质求出OD,OA,再根据三角形三边关系求出a的取值范围.【详解】因为平行四边形中,,,所以,所以6-4<AD<6+2,即2<a<8.故答案为:2<a<8.【点睛】考核知识点:平行四边形性质.理解平行四边形对角线互相平分是关键.三、解答题(共78分)19、见解析【分析】先根据“HL”证明△ADE≌△BCF,可证∠A=∠B,然后根据内错角相等,两直线平行即可解答.【详解】∵,,∴∠D=∠C=90°.∵,∴AE=BF.在△ADE和△BCF中,∵AE=BF,,∴△ADE≌△BCF(HL),∴∠A=∠B,∴.【点睛】本题主要考查了平行线的判定,全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.20、(1)Q(1.5,0),意义:甲、乙两人分别从A,B两地同时出发后,经过1.5小时两人相遇;(2)甲、乙的速度分别为12km/h、8km/h【分析】(1)根据待定系数法,求出直线PQ解析式,从而求出点Q得坐标,再说出它的实际意义,即可;(2)设甲的速度为akm/h,乙的速度为bkm/h,根据图象列出二元一次方程组,即可求解.【详解】(1)设直线PQ解析式为:y=kx+b,把已知点P(0,30),E(,20)代入得:,解得:,∴直线PQ解析式为:y=﹣20x+30,∴当y=0时,x=1.5,∴Q(1.5,0).它的实际意义是:甲、乙两人分别从A,B两地同时出发后,经过1.5小时两人相遇;(2)设甲的速度为akm/h,乙的速度为bkm/h,由第(1)题得,甲、乙经过1.5小时两人相遇;由图象得:第h时,甲到B地,∴,解得:.答:甲、乙的速度分别为12km/h、8km/h.【点睛】本题主要考查一次函数的实际应用,掌握待定系数法以及函数图象上点的实际意义,是解题的关键.21、(1)(x+9)(x﹣2);(2)7,﹣7,2,﹣2【解析】试题分析:(1)仿照题中十字相乘法将原式分解即可;(2)把﹣8分为两个整数相乘,其和即为整数p的值,写出即可.解:(1)原式=(x+9)(x﹣2);(2)若x2+px﹣8可分解为两个一次因式的积,则整数p的所有可能值是﹣8+1=﹣7;﹣1+8=7;﹣2+4=2;﹣4+2=﹣2,故答案为7,﹣7,2,﹣2考点:因式分解-十字相乘法等.22、(1);(2)作图详见解析;(3)作图详见解析.【解析】试题分析:(1)用△ABC所在的四边形的面积减去三个多余小三角形的面积即可;(2)从三角形各顶点向DE引垂线并延长相同的长度,找到对应点,顺次连接;(3)利用轴对称图形的性质可作点A关于直线DE的对称点,连接,交直线DE于点Q,点Q即为所求.试题解析:(1)=3×3﹣×3×1﹣×2×1﹣×2×3=;(2)所作图形如图所示:(3)如图所示:利用轴对称图形的性质可得点A关于直线DE的对称点,连接,交直线DE于点Q,点Q即为所求,此时△QAB的周长最小.考点:作图-轴对称变换;轴对称-最短路线问题.23、(1)见解析;(2)见解析;(1)见解析【分析】(1)根据平移的性质作出A,B的对应点A1,B1,连接即可;(2)根据旋转的性质作出A,B的对应点A2,B2,连接即可;(1)根据中心对称的性质作出A,B的对应点A1,B1,连接即可.【详解】解:(1)如图,线段A1B1即为所求;(2)如图,线段A2B2即为所求;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论