2023年四川省乐山市高职录取数学月考卷题库(含答案)_第1页
2023年四川省乐山市高职录取数学月考卷题库(含答案)_第2页
2023年四川省乐山市高职录取数学月考卷题库(含答案)_第3页
2023年四川省乐山市高职录取数学月考卷题库(含答案)_第4页
2023年四川省乐山市高职录取数学月考卷题库(含答案)_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年四川省乐山市高职录取数学月考卷题库(含答案)学校:________班级:________姓名:________考号:________

一、单选题(50题)1.设a>b,c>d,则下列不等式成立的是()

A.ac>bdB.b+d

d/bD.a-c>b-d

2.函数f(x)=ln(2-x)的定义域是()

A.[-2,2]B.(-2,2)C.(-∞,2)D.(-2,+∞)

3.函数y=4sin2x(x∈R)的最小值是()

A.−4B.−1C.0D.4

4.从甲地到乙地有3条路线,从乙地到丙地有4条路线,则从甲地经乙地到丙地的不同路线共有()

A.3种B.4种C.7种D.12种

5.“|x-1|<2成立”是“x(x-3)<0成立”的(

)

A.充分而不必要条件B.充分而不必要条件C.充分必要条件D.既不充分也不必要条件

6.“x<1”是”“|x|>1”的()

A.必要不充分条件B.充分不必要条件C.充分必要条件D.既不充分也不必要条件

7.已知等差数列{an}的公差为2,若a₁,a₃,a₄成等比数列,则a₂=().

A.-4B.-6C.-8D.-10

8.圆x²+y²-4x+4y+6=0截直线x-y-5=0所得弦长等于()

A.√6B.1C.5D.5√2/2

9.已知向量a=(-1,2),b=(0,-1),则a·(-b)=()

A.-2B.2C.-1D.1

10.在△ABC中,若A=60°,B=45°,BC=3√2,则AC=()

A.4√3B.2√3C.√3D.√3/2

11.X>3是X>4的()

A.充分条件B.必要条件C.充要条件D.即不充分也不必要条件

12.与直线x-y-7=0垂直,且过点(3,5)的直线为()

A.x+y−8=0B.x-y+2=0C.2x-y+8=0D.x+2y+1=0

13.下列函数中在定义域内既是奇函数又是增函数的是()

A.y=x-3B.y=-x²C.y=3xD.y=2/x

14.“θ是锐角”是“sinθ>0”的()

A.充分不必条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件

15.已知两个班,一个班35个人,另一个班30人,要从两班中抽一名学生,则抽法共有()

A.1050种B.65种C.35种D.30种

16.样本5,4,6,7,3的平均数和标准差为()

A.5和2B.5和√2C.6和3D.6和√3

17.不等式(x²-4x−5)(x²+8)<0的解集是()

A.{x|-1<x<5}

B.{x|x<-1或x>5}

C.{x|0<x<5}

D.{x|−1<x<0}

18.若直线x+y=0与直线ax-2y+1=0互相垂直,则a的值为()

A.-2B.2C.-1D.1

19.将一个容量为40的样本分成若干组,在它的频率分布直方图中,若其中一组的相应的小长方形的面积是0.4,则该组的频数等于()

A.4B.6C.10D.16

20.抛物线y²=8x,点P到点(2,0)的距离为3,则点P到直线x=-2的距离是()

A.2√2B.2C.3D.4

21.从2,3,5,7四个数中任取一个数,取到奇数的概率为()

A.1/4B.1/2C.1/3D.3/4

22.在空间中,直线与平面的位置关系是()

A.平行B.相交C.直线在平面内D.平行、相交或直线在平面内

23.经过两点A(4,0),B(0,-3)的直线方程是()

A.3x-4y-12=0

B.3x+4y-12=0

C.4x-3y+12=0

D.4x+3y+12=0

24.在△ABC中,a=√3,b=2,c=1,那么A的值是()

A.Π/2B.Π/3C.Π/4D.Π/6

25.若x,a,2x,b成等差数列,则a/b=()

A.1/2B.3/5C.1/3D.1/5

26.设命题p:x>3,命题q:x>5,则()

A.p是q的充分条件但不是q的必要条件

B.p是q的必要条件但不是q的充分条件

C.p是q的充要条件

D.p不是q的充分条件也不是q的必要条件

27.等差数列{an}的前5项和为5,a2=0则数列的公差为()

A.1B.2C.3D.4

28.不等式x²-x-2≤0的解集是()

A.(-1,2)B.(-2,1)C.(-2,2)D.[-1,2]

29.已知x,2x+2,3x+3是一个等比数列的前三项,则x的值为()

A.-4或-1B.-4C.-1D.4或1

30.在等差数列{an}中,a2+a9=16,则该数列前10项的和S10的值为()

A.66B.78C.80D.86

31.已知过点A(a,2),和B(2,5)的直线与直线x+y+4=0垂直,则a的值为()

A.−2B.−2C.1D.2

32.10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12.设其平均数为a,中位数为b,众数为c,则有().

A.a>b>cB.b>c>aC.c>a>bD.c>b>a

33.log₁₀1000等于()

A.1B.2C.3D.4

34.不等式|x²-2|<2的解集是()

A.(-1,1)B.(-2,2)C.(-1,0)∪(0,1)D.(-2,0)∪(0,2)

35.若函数f(x)=3x²+bx-1(b∈R)是偶函数,则f(-1)=()

A.4B.-4C.2D.-2

36.抛物线y²=4x的准线方程是()

A.x=-1B.x=1C.y=-1D.y=-1

37.设奇函数f(x)是定义在R上的增函数,且f(-1)=2,且满足f(x²-2x+2)≥一2,则x的取值范围是()

A.ØB.(2,+∞)C.RD.(2,+∞)D∪(-∞,0)

38.若等差数列前两项为-3,3,则数列的公差是多少().

A.-3B.3C.0D.6

39.在“绿水青山就是金山银山”这句话中任选一个汉字,这个字是“山”的概率为()

A.3/10B.1/10C.1/9D.1/8

40.某大学数学系共有本科生5000人,其中一、二、三四年级的学生比为4:3:2:1,用分层抽样的方法抽取一个容量为200人的样本,则应抽取二年级的学生人数为()

A.80B.40C.60D.20

41.已知顶点在原点,准线方程x=4的抛物线标准方程()

A.y²=-16xB.y²=8xC.y²=16xD.y²=-8x

42.双曲线x²/10+y²/2=1的焦距为()

A.2√2B.2√3C.4√2D.4√3

43.过点P(1,-1)垂直于X轴的直线方程为()

A.x+1=0B.x-1=0C.y+1=0D.y-1=0

44.某工厂生产A、B、C三种不同型号的产品,产品的数量之比依次为7:3:5,现在用分层抽样的方法抽出容量为n的样本,样本中A型产品有42件则本容量n为()

A.80B.90C.126D.210

45.圆(x-2)²+y²=4的圆心到直线x+ay-4=0距离为1,且a>0,则a=()

A.3B.2C.√2D.√3

46.定义在R上的函数f(x)是奇函数,且f(x+2)=f(x),则f(-1)+f(4)+f(7)=()

A.-1B.0C.1D.4

47.函数y=sin²2x-cos²2x的最小正周期是()

A.Π/2B.ΠC.(3/2)ΠD.2Π

48.已知平行四边形的三个顶点A.B.C的坐标分别是(−2,1),(−1,3),(3,4),则顶点D的坐标是()

A.(2,1)B.(2,2)C.(1,2)D.(1,3)

49.从1、2、3、4、5五个数中任取一个数,取到的数字是3或5的概率为()

A.1/5B.2/5C.3/5D.4/5

50.同时掷两枚骰子,所得点数之积为12的概率为()

A.1/12B.1/4C.1/9D.1/6

二、填空题(20题)51.已知函数f(x)=Asinwx,(A>0,w>0)的最大值是2,最小正周期为Π/2,则函数f(x)=________。

52.已知A(1,3),B(5,1),则线段AB的中点坐标为_________;

53.已知数据x₁,x₂,x₃,x₄,x₅,的平均数为80,则数据x₁+1,x₂+2,x₃+3,x₄+4,x₅+5的平均数为________。

54.不等式|8-2x|≤3的解集为________。

55.已知函数f(x)是定义R上的奇函数,当x∈(-∞,0)时,f(x)=2x³+x²,则f(2)=________。

56.不等式3|x|<9的解集为________。

57.双曲线x²-y²=-1的离心率为_________________。

58.向量a=(一2,1),b=(k,k+1),若a//b,则k=________。

59.若(lg50+lg2)(√2)^x=4,则x=________。

60.若等边三角形ABC的边长为2,则,AB·BC=________。

61.已知f(x)=x+6,则f(0)=____________;

62.已知直线方程为y=3x-5,圆的标准方程为(x+1)²+(y-2)²=25,则直线与圆的位置关系是直线与圆________(填“相切”相交”或“相离”)

63.以两直线x+y=0和2x-y-3=0的交点为圆心,且与直线2x-y+2=0相切的圆的标准方程方程是________。

64.已知点A(1,2)和B(3,-4),则以线段AB为直径的圆的标准方程是________。

65.甲有100,50,5元三张纸币,乙有20,10元两张纸币,两人各取一张自己的纸币,比较纸币大小,则甲的纸币比乙的纸币小的概率=_________。

66.直线y=ax+1的倾斜角是Π/3,则a=________。

67.sin(-60°)=_________。

68.直线x+2y+1=0被圆(x一2)²+(y-1)²=25所截得的弦长为______。

69.将一个容量为n的样本分成3组,已知第1,2组的频率为0.2,0.5,第三组的频数为12,则n=________。

70.从1到40这40个自然数中任取一个,是3的倍数的概率是()

三、计算题(10题)71.已知sinα=1/3,则cos2α=________。

72.在△ABC中,角A,B,C所对应的边分别是a,b,c,已知b=2√2,c=√5,cosB=√5/5。(1)求a的值;(2)求△ABC的面积

73.某社区从4男3女选2人做核酸检测志愿者,选中一男一女的概率是________。

74.圆(x-1)²+(x-2)²=4上的点到直线3x-4y+20=0的最远距离是________。

75.已知三个数成等差数列,它们的和为9,若第三个数加上4后,新的三个数成等比数列,求原来的三个数。

76.书架上有3本不同的语文书,2本不同的数学书,从中任意取出2本,求(1)都是数学书的概率有多大?(2)恰有1本数学书概率

77.计算:(4/9)^½+(√3+√2)⁰+125^(-⅓)

78.解下列不等式:x²≤9;

79.数列{an}为等差数列,a₁+a₂+a₃=6,a₅+a₆=25,(1)求{an}的通项公式;(2)若bn=a₂n,求{bn}前n项和Sn;

80.我国是一个缺水的国家,节约用水,人人有责;某市为了加强公民的节约用水意识,采用分段计费的方法A)月用水量不超过10m³的,按2元/m³计费;月用水量超过10m³的,其中10m³按2元/m³计费,超出部分按2.5元/m³计费。B)污水处理费一律按1元/m³计费。设用户用水量为xm³,应交水费为y元(1)求y与x的函数关系式(2)张大爷家10月份缴水费37元,问张大爷10月份用了多少水量?

参考答案

1.B本题是选择题可以采用特殊值法进行检验。因为a>b,c>d,所以设B=-1,a=-2,d=2,c=3,故选B.考点:基本不等式

2.C

3.A[解析]讲解:正弦函数图像的考察,正弦函数的最值是1和-1,所以4sin2x最小值为-4,选A

4.D

5.B[解析]讲解:解不等式,由|x-1|<2得xϵ(-1,3),由x(x-3)<0得xϵ(0,3),后者能推出前者,前者推不出后者,所以是必要不充分条件。

6.B

7.B[解析]讲解:等差数列中a₃=a₁+2d,a₄=a₁+3d,a₁,a₃,a₄成等差数列,所以(a₁+2d)²=a₁(a₁+3d),解得a₁=-8,a₂=-6

8.A由圆x²+y²-4x+4y+6=0,易得圆心为(2,-2),半径为√2.圆心(2,-2)到直线x-y-5=0的距离为√2/2.利用几何性质,则弦长为2√(√2)²-(√2/2)²=√6。考点:和圆有关的弦长问题.感悟提高:计算直线被圆截得弦长常用几何法,利用圆心到直线的距离,弦长的一半,及半径构成直角三角形计算,即公式d²+(AB/2)²=r²,d是圆到直线的距离,r是圆半径,AB是弦长.

9.B

10.BBC/sinA=AC/sinB<=>3√2/sin60°<=>AC/sin45°<=>AC=2√3考点:正弦定理.

11.B

12.D[答案]A[解析]讲解:直线方程的考查,两直线垂直则斜率乘积为-1,选A,经验证直线过点(3,5)。

13.C

14.A由sinθ>0,知θ为第一,三象限角或y轴正半轴上的角,选A!

15.B

16.B

17.A[解析]讲解:一元二次不等式的考察,由于括号内x²+8始终是大于0的,所以整体的正负是由前一个括号控制的,所以等价于x²-4x−5<0,解得1<x<5

18.B

19.D

20.A

21.D

22.D

23.A由直线方程的两点式可得经过两点两点A(4,0),B(0,-3)的直线方程为:(y-0)/(-3-0)=(x-0)/(0-4),既3x-4y-12=0故选A.考点:直线的两点式方程.

24.B

25.B

26.B考查充要条件概念,x>5=>x>3,所以p是q的必要条件;又因为x>3=>x>>5,所以p不是q的充分条件,故选B.考点:充分必要条件的判定.

27.AS5=(a1+a5)/2=5,a1+a5=2,即2a3=2,a3=1,公差d=a3-a2=1-0=1.考点:等差数列求公差.

28.D

29.B

30.B

31.B

32.D[答案]D[解析]讲解:重新排列10,12,14,14,15,15,16,17,17,17,算得,a=14.7.b=15,c=17答案选D

33.C

34.D[解析]讲解:绝对值不等式的求解,-2<x²-2<2,故0<x²

35.C

36.A

37.C

38.D[解析]讲解:考察等差数列的性质,公差为后一项与前一项只差,所以公差为d=3-(-3)=6

39.A

40.C

41.A

42.D由双曲方程可知:a²=10,b²=2,所以c²=12,c=2√3,焦距为2c=4√3.考点:双曲线性质.

43.B

44.B

45.D

46.B

47.A

48.B根据平行四边形的性质,对边平行且相等,所以对边的向量相等,向量AB=向量DC,所以(-1,3)-(-2,1)=(3,4)-(x,y)解得D点坐标(x,y)=(2,2),故选B

49.B

50.C

51.2sin4x

52.(3,2)

53.83

54.[5/2,11/2]

55.12

56.(-3,3)

57.√2

58.-2/3

59.2

60.-2

61.6

62.相交

63.(x-1)²+(y+1)²=5

64.(x-2)²+(y+1)²=10

65.1/3

66.√3

67.-√3/2

68.4√5

69.40

70.13/40

71.7/9

72.解:由余弦定理b²=a²+c²-2ac·cosB,得(2√2)²=a²+(√5)²-2·a×√5×√5/5,所以a²-2a-3=0所以a=3或a=-1(舍去)(2)因为cosB=√5/5,由平方关系得:sinB=(2√5)/5,所以S△ABC=1/2asinB=1/2×3×√5×(2√5)/5=3a=3,面积为3。

73.4/7

74.5

75.解:设原来三

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论