版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年山东省日照市高三单招数学自考模拟考题库(含答案)学校:________班级:________姓名:________考号:________
一、单选题(50题)1.cos78°*cos18°+sin18°sin102°=()
A.-√3/2B.√3/2C.-1/2D.1/2
2.不在3x+2y<6表示的平面区域内的点是()
A.(0,0)B.(1,1)C.(0,2)D.(2,0)
3.已知集合A={2,4,6},B={6,a,2a},且A=B,则a的值为()
A.2B.4C.6D.8
4.下列幂函数中过点(0,0),(1,1)的偶函数是()
A.y=x^(1/2)B.y=x^4C.y=x^(-2)D.y=x^(1/3)
5.直线l₁的方程为x-√3y-√3=0,直线l₂的倾斜角为l₁倾斜角的2倍,且l₂经过原点,则l₂的方程为()
A.2x-√3y=0B.2x+√3y=0C.√3x+y=0D.√3x—y=0
6.(1-x³)(1+x)^10展开式中,x⁵的系数是()
A.−297B.−252C.297D.207
7.将5封信投入3个邮筒,不同的投法共有()
A.5^3种B.3^5种C.3种D.15种
8.不等式(x-1)(x-2)<2的解集是()
A.{x∣x<3}B.{x∣x<0}C.{x∣0<x3}
9.己知tanα=2,则(2sinα-cosα)/(sinα+3cosα)=()
A.3/5B.5/3C.1/4D.2
10.f(-1)是定义在R上是奇函数,且对任意实数x,有f(x+4)=f(x),若f(-1)=3.则f(4)+f(5)=()
A.-3B.0C.3D.6
11.在一个口袋中有除了颜色外完全相同的5个红球3个黄球、2个蓝球,从中任意取出5个球,则刚好2个红球、2个黄球、1个蓝球的概率是()
A.2/5B.5/21C.1/2D.3/5
12.倾斜角为135°,且在x轴上截距为3的直线方程是()
A.x+y+3=0B.x+y-3=0C.x-y+3=0D.x-y-3=0
13.与直线x-y-7=0垂直,且过点(3,5)的直线为()
A.x+y−8=0B.x-y+2=0C.2x-y+8=0D.x+2y+1=0
14.向量a=(1,0)和向量b=(1,√3)的夹角为()
A.0B.Π/6C.Π/2D.Π/3
15.已知点A(1,1)和点B(5,5),则线段AB的垂直平分线方程为()
A.x+y-6=0B.2x+y一6=0C.z+y+6=0D.4x+y+6=0
16.抛物线y²=-8x的焦点坐标是()
A.(-2,0)B.(2,0)C.(0,-2)D.(0,2)
17.A(-1,4),B(5,2),线段AB的垂直平分线的方程是()
A.3x-y-3=0B.3x+y-9=0C.3x-y-10=0D.3x+y-8-0
18.不等式(x²-4x−5)(x²+8)<0的解集是()
A.{x|-1<x<5}
B.{x|x<-1或x>5}
C.{x|0<x<5}
D.{x|−1<x<0}
19.若向量a=(-2,4)与b=(3,y)平行,则y的值是()
A.-6B.6C.-4D.4
20.从甲地到乙地有3条路线,从乙地到丙地有4条路线,则从甲地经乙地到丙地的不同路线共有()
A.3种B.4种C.7种D.12种
21.设a=log₃2,b=log₅2,c=log₂3,则
A.a>c>bB.b>c>aC.c>b>aD.c>a>b
22.过点P(1,-1)且与直线3x+y-4=0平行的直线方程为()
A.3x+y-2=0B.x-3y-4=0C.3x-y-4=0D.x+3y+2=0
23.经过两点A(4,0),B(0,-3)的直线方程是()
A.3x-4y-12=0
B.3x+4y-12=0
C.4x-3y+12=0
D.4x+3y+12=0
24.不等式x²-3x-4≤0的解集是()
A.[-4,1]B.[-1,4]C.(-∞,-l]U[4,+∞)D.(-∞,-4]U[1,+∞)
25.已知函数f(x)=x²-2x+b(b为实数)则下列各式中成立的是()
A.f(1)<f(0)
B.f(0)<f(1)
C.f(0)<f(4)
D.f(1)<f(4)
26.某市教委为配合教育部公布高考改革新方案,拟定在B中学生进行调研,广泛征求高三年级学生的意见。B中学高三年级共有700名学生,其中理科生500人,文科生200人,现采用分层抽样的方法从中抽取14名学生参加调研,则抽取的理科生的人数为()
A.2B.4C.5D.10
27.圆(x-2)²+y²=4的圆心到直线x+ay-4=0距离为1,且a>0,则a=()
A.3B.2C.√2D.√3
28.已知集合A={0,1,2,3,4},B={0,2,4,8},那么A∩B子集的个数是()
A.6B.7C.8D.9
29.不等式(x+2)(x−3)≤0的解集为()
A.ØB.{x|−2≤x≤3}C.RD.{x|x≥3或x≤−2}
30.已知向量a=(2,-3),向量b=(一6,y),且a⊥b,则y=()
A.-9B.9C.4D.-4
31.在△ABC中,内角A,B满足sinAsinB=cosAcosB,则△ABC是()
A.等边三角形B.钝角三角形C.非等边锐角三角形D.直角三角形
32.要得到函数y=cos2x的图象,只需将函数y=-sin2x的图象沿x轴()
A.向右平移Π/4个单位B.向左平移Π/4个单位C.向右平移Π/8个单位D.向左平移Π/8个单位
33.“ab>0”是“a/b>0”的()
A.充分不必要条件B.必要不充分条件C.必要不充分条件D.既不充分也不必要条件
34.两个正方体的体积之比是1:8,则这两个正方体的表面积之比是()
A.1:2B.1:4C.1:6D.1:8
35.cos70°cos50°-sin70°sin50°=()
A.1/2B.-1/2C.√3/2D.-√3/2
36.在(0,+∞)内,下列函数是增函数的是()
A.y=sinxB.y=1/xC.y=x²D.y=3-x
37.某射击运动员的第一次打靶成绩为8,8,9,8,7第二次打靶成绩为7,8,9,9,7,则该名运动员打靶成绩的稳定性为()
A.一样稳定B.第一次稳定C.第二次稳定D.无法确定
38.已知圆x²+y²=a与直线z+y-2=0相切,则a=()
A.2√2B.2C.3D.4
39.已知f(x)=ax³+bx-4,其中a,b为常数,若f(-2)=2,则f(2)的值等于()
A.-2B.-4C.-6D.-10
40.直线y=x+1与圆x²+y²=1的位置关系是()
A.相切B.相交但直线不过圆心C.直线过圆心D.相离
41.函数y=4x²的单调递增区间是().
A.(0,+∞)B.(1/2,+∞)C.(-∞,0)D.(-∞,-1/2)
42.抛物线y²=4x上的一点P至焦点F的距离为3,则P到轴y的距离为()
A.4B.3C.2D.1
43.双曲线(x²/17)-(y²/8)=1的右焦点的坐标为()
A.(0,5)B.(0,-5)C.(5,0)D.(-5,0)
44.已知{an}为等差数列,a1+a3+a5=105,a2+a4+a6=99,则a20等于()
A.-1B.1C.3D.7
45.已知圆的方程为x²+y²-4x+2y-4=0,则圆的半径为()
A.±3B.3C.√3D.9
46.等差数列{an}的前5项和为5,a2=0则数列的公差为()
A.1B.2C.3D.4
47.袋中有除颜色外完全相同的2红球,2个白球,从袋中摸出两球,则两个都是红球的概率是()
A.1/6B.1/3C.1/2D.2/3
48.定义在R上的函数f(x)是奇函数,且f(x+2)=f(x),则f(-1)+f(4)+f(7)=()
A.-1B.0C.1D.4
49.-240°是()
A.第一象限的角B.第二象限的角C.第三象限的角D.第四象限的角
50.以圆x²+2x+y²=0的圆心为圆心,半径为2的圆的方程()
A.(x+1)²+y²=2B.(x+1)²+y²=4C.(x−1)²+y²=2D.(x−1)²+y²=4
二、填空题(20题)51.已知点A(1,2)和点B(3,-4),则以线段AB的中点为圆心,且与直线x+y=5相切的圆的标准方程是________。
52.不等式|8-2x|≤3的解集为________。
53.以点(−2,−1)为圆心,且过p(−3,0)的圆的方程是_________;
54.双曲线x²/4-y²=1的渐近线方程为__________。
55.已知数据x₁,x₂,x₃,x₄,x₅,的平均数为80,则数据x₁+1,x₂+2,x₃+3,x₄+4,x₅+5的平均数为________。
56.若2^x>1,则x的取值范围是___________;
57.在等差数列{an}中,a3+a5=26,则S7的值为____________;
58.过点A(2,-1),B(0,-1)的直线的斜率等于__________.
59.同时抛掷两枚质地均匀的硬币,则出现两个正面朝上的概率是________。
60.双曲线(x²/4)-(y²/32)=1的离心率e=_______。
61.(√2-1)⁰+lg5+lg2-8^⅓=___________。
62.首项a₁=2,公差d=3的等差数列前10项之和为__________。.
63.甲有100,50,5元三张纸币,乙有20,10元两张纸币,两人各取一张自己的纸币,比较纸币大小,则甲的纸币比乙的纸币小的概率=_________。
64.4张卡片上分别写有3,4,5,6,从这4张卡片中随机取两张,则取出的两张卡片上数字之和为偶数的概率为______。
65.若向量a=(1,-1),b=(2,-1),则|3a-b|=________。
66.在关系式y=2x²+x+1中,可把_________看成_________的函数,其中_________是自变量,_________是因变量。
67.已知平面向量a=(1,2),=(一2,1),则a与b的夹角是________。
68.若直线2x-y-2=0,与直线x+ay+1=0平行,则实数a的取值为_____________。
69.在区间[-2,3]上随机选取一个数X,则X≤1的概率为________。
70.sin(-60°)=_________。
三、计算题(10题)71.圆(x-1)²+(x-2)²=4上的点到直线3x-4y+20=0的最远距离是________。
72.书架上有3本不同的语文书,2本不同的数学书,从中任意取出2本,求(1)都是数学书的概率有多大?(2)恰有1本数学书概率
73.在△ABC中,角A,B,C所对应的边分别是a,b,c,已知b=2√2,c=√5,cosB=√5/5。(1)求a的值;(2)求△ABC的面积
74.某社区从4男3女选2人做核酸检测志愿者,选中一男一女的概率是________。
75.已知在等差数列{an}中,a1=2,a8=30,求该数列的通项公式和前5项的和S5;
76.已知三个数成等差数列,它们的和为9,若第三个数加上4后,新的三个数成等比数列,求原来的三个数。
77.已知sinα=1/3,则cos2α=________。
78.求证sin²α+sin²β−sin²αsin²β+cos²αcos2²β=1;
79.求函数y=cos²x+sinxcosx-1/2的最大值。
80.已知tanα=2,求(sinα+cosα)/(2sinα-cosα)的值。
参考答案
1.D
2.D
3.A[解析]讲解:考察集合相等,集合里的元素也必须相同,a,2a,要分别等于2,4,则只能有a=2,选A
4.B[解析]讲解:函数图像的考察,首先验证是否过两点,C定义域不含x=0,因为分母有自变量,然后验证偶函数,A选项定义域没有关于原点对称,D选项可以验证是奇函数,答案选B。
5.D
6.D
7.B[解析]讲解:由于每一封信都有三种选择,则共有3^5种方法
8.C[答案]C[解析]讲解:不等式化简为x²-3x<0,解得答案为0<x<3
9.A
10.A
11.B
12.B[答案]B[解析]讲解:考察直线方程的知识,斜率为倾斜角的正切值k=tan135°=-1,x轴截距为3则过定点(3,0),所以直线方程为y=-(x-3)即x+y-3=0,选B
13.D[答案]A[解析]讲解:直线方程的考查,两直线垂直则斜率乘积为-1,选A,经验证直线过点(3,5)。
14.D
15.A
16.A
17.A
18.A[解析]讲解:一元二次不等式的考察,由于括号内x²+8始终是大于0的,所以整体的正负是由前一个括号控制的,所以等价于x²-4x−5<0,解得1<x<5
19.A
20.D
21.D
22.A解析:考斜率相等
23.A由直线方程的两点式可得经过两点两点A(4,0),B(0,-3)的直线方程为:(y-0)/(-3-0)=(x-0)/(0-4),既3x-4y-12=0故选A.考点:直线的两点式方程.
24.B
25.A
26.D分层抽样就是按比例抽样,由题意得:抽取的理科生人数为:14/700*500=10选D.考点:分层抽样.
27.D
28.C[解析]讲解:集合子集的考察,首先求A∩B={0,2,4}有三个元素,则子集的个数为2^3=8,选C
29.B
30.D
31.D
32.A
33.C
34.B[解析]讲解:由于立方体的体积为棱长的立方,当体积比为1:8的时候,棱长比就应该为1:2,表面积又是六倍棱长的平方,所以表面积之比为1:4。
35.B
36.C
37.B
38.C
39.D
40.B圆x²+y²=1的圆心坐标为(0,0),半径长为1,则圆心到直线y=x+1的距离d=1/√2=√2/2,因为0<√2/2<1,所以直线y=x+1与圆x²+y²=1相交但直线不过圆心.考点:直线与圆的位置关系.
41.A[解析]讲解:二次函数的考察,函数对称轴为y轴,则单调增区间为(0,+∞)
42.C
43.C
44.B
45.B圆x²+y²-4x+2y-4=0,即(x-2)²+(y+1)²=9,故此圆的半径为3考点:圆的一般方程
46.AS5=(a1+a5)/2=5,a1+a5=2,即2a3=2,a3=1,公差d=a3-a2=1-0=1.考点:等差数列求公差.
47.A
48.B
49.B
50.B[解析]讲解:圆的方程,重点是将方程化为标准方程,(x+1)²+y²=1,半径为2的话方程为(x+1)²+y²=4
51.(x-2)²+(y+1)²=8
52.[5/2,11/2]
53.(x+2)²+(y+1)²=2
54.y=±2x
55.83
56.X>0
57.91
58.0
59.1/4
60.3
61.0
62.155
63.1/3
64.1/3
65.√5
66.可把y看成x的函数,其中x是自变量,y是因变量.
67.90°
68.-1/2
69.3/5
70.-√3/2
71.5
72.解:(1)设3本不同的语文书为1,2,3,设2本不同的数学书为a,b从中任意取出2本为(m,n),如下:(1,2)(1,3)(1,a)(1,b)(2,3)(2,a)(2,b)(3,a)(3,b)(a,b)共10种,其中都是数学书的有(a,b)1种P=0.1(2)恰有1本数学书有(1,a)(1,b)(2,a)(2,b)(3,a)(3,b)6种P=0.6
73.解:由余弦定理b²=a²+c²-2ac·cosB,得(2√2)²=a²+(√5)²-2·a×√5×√5/5,所以a²-2a-3=0所以a=3或a=-1(舍去)(2)因为cosB=√5/5,由平方关系得:sinB=(2√5)/5,所以S△A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度保险合同:某保险公司与投保人之间的保险保障协议3篇
- 2024年度二手私人住宅买卖合同示例2篇
- 2024年度二手房装修工程变更与调整合同3篇
- 房屋买卖合同2024年版:含共有权与分割条款2篇
- 2024年度故宫博物院文物修复工程合同3篇
- 二零二四年度新能源技术研发合同(含专利共享)3篇
- 2024年度国际物流与仓储服务协议2篇
- 二零二四年度食品加工企业采购合同2篇
- Whipple病的临床护理
- 2024年度大数据分析与许可使用协议(具体数据范围)3篇
- 《民用建筑项目节能评估技术导则》
- (2024年)《口腔医学美学》课件
- 七年级英语下册读写综合专项训练
- 门诊护患沟通技巧(简)
- 放射性物质的标志与标识
- 2024年传染病培训课件
- 肿瘤科护理培训总结报告
- 农民心理健康教育
- 生猪屠宰厂员工培训方案
- 天冬中药材种植可行性研究报告
- 电力抢修培训课件
评论
0/150
提交评论