浙江省宁波市2024届高三上学期高考模拟考试数学试题(解析版)_第1页
浙江省宁波市2024届高三上学期高考模拟考试数学试题(解析版)_第2页
浙江省宁波市2024届高三上学期高考模拟考试数学试题(解析版)_第3页
浙江省宁波市2024届高三上学期高考模拟考试数学试题(解析版)_第4页
浙江省宁波市2024届高三上学期高考模拟考试数学试题(解析版)_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGEPAGE1浙江省宁波市2024届高三上学期高考模拟考试数学试题一、选择题1.已知(,为虚数单位),若是实数,则()A. B.C. D.【答案】A【解析】因为是实数,所以,故选:A.2.设集合,集合,则()A. B.C. D.【答案】B【解析】因为,所以,,,因为,所以,故选:B3.若是夹角为的两个单位向量,与垂直,则()A. B. C. D.【答案】B【解析】由题意有,又因为与垂直,所以,整理得,解得.故选:B4.已知数列为等比数列,且,则()A.的最小值为50 B.的最大值为50C.的最小值为10 D.的最大值为10【答案】C【解析】由题意,在等比数列中,,设公比为,则,∴,当且仅当即时等号成立,∴的最小值为10,故选:C.5.已知函数的零点分别为,则()A. B.C. D.【答案】D【解析】令,可得,所以,即;令,可得,即,所以,即;令,可得,由此可得,所以,即,作的图象,如图,由图象可知,,所以.故选:D6.设为坐标原点,为椭圆的焦点,点在上,,则()A. B.0 C. D.【答案】C【解析】如下图所示:不妨设,根据椭圆定义可得,;由余弦定理可知;又因为,所以,又,即可得,解得;又,即;所以可得;故选:C.7.已知二面角的大小为,球与直线相切,且平面、平面截球的两个截面圆的半径分别为、,则球半径的最大可能值为()A. B. C. D.【答案】D【解析】设点在平面、平面内的射影点分别为、,设球切于点,连接、、,如下图所示:因为平面,平面,则,由球的几何性质可知,,因为,、平面,则平面,同理可知,平面,因为过点作直线的垂面,有且只有一个,所以,平面、平面重合,因为平面,平面,则,同理可知,,所以,、、、四点共圆,由已知条件可知,,,因平面,、平面,则,,所以,二面角的平面角为或其补角.①当时,由余弦定理可得,故,易知,为外接圆的一条弦,所以,球半径的最大值即为外接圆的直径,即为;②当时,由余弦定理可得故,易知,为外接圆的一条弦,所以,球半径的最大值即为外接圆的直径,即为.综上所述,球的半径的最大可能值为.故选:D.8.已知函数,若不等式在上恒成立,则满足要求的有序数对有()A.0个 B.1个 C.2个 D.无数个【答案】B【解析】由题意若不等式在上恒成立,则必须满足,即,由,两式相加得,再由,两式相加得,结合(4),(5)两式可知,代入不等式组得,解得,经检验,当,时,,有,,满足在上恒成立,综上所述:满足要求的有序数对为:,共一个.故选:B.二、多选题9.已知,则下列说法正确的是()A. B.C. D.【答案】ABD【解析】对于A,取,则,则A正确;对B,根据二项式展开通式得的展开式通项为,即,其中所以,故B正确;对C,取,则,则,故C错误;对D,取,则,将其与作和得,所以,故D正确;故选:ABD.10.设O为坐标原点,直线过圆的圆心且交圆于两点,则()A. B.C.的面积为 D.【答案】BC【解析】由圆的方程,则,所以圆心,半径,易知,故A错误;将代入直线方程,则,解得,故B正确;将代入直线方程,整理可得直线方程,原点到直线的距离,且此为底上的高,所以,故C正确;由与,则直线的斜率,由直线方程,则直线斜率,由,则与不垂直,故D错误.故选:BC.11.函数在区间上为单调函数,且图象关于直线对称,则()A.将函数的图象向右平移个单位长度,所得图象关于y轴对称B.函数在上单调递减C.若函数在区间上没有最小值,则实数的取值范围是D.若函数在区间上有且仅有2个零点,则实数a的取值范围是【答案】AB【解析】由题意且,可得,,故当时,,.对A,函数的图象向右平移个单位长度可得,故函数图象关于y轴对称,故A正确;对B,当时,,所以函数单调递减,故B正确;对C,当时,,函数在区间上没有最小值,则需,即,故C错误;对D,由C,函数在区间上有且仅有2个零点,则,即,故D错误.故选:AB12.已知函数:,对任意满足的实数,均有,则()A. B.C.是奇函数 D.是周期函数【答案】AC【解析】由,令,则,即,因为,所以,故A正确;令,,则,即,即,所以,即,所以函数是奇函数,故C正确;令,则,由AC选项,不妨设,则,,满足,而BD选项不满足,故BD错误.故选:AC.三、填空题13.已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边过点,则___________.【答案】【解析】由题意结合三角函数定义可知,从而由诱导公式有.故答案为:.14.已知圆台的上、下底面半径分别为1和2,体积为,则该圆台的侧面积为___________.【答案】【解析】根据题意可知,圆台上底面面积为,下底面面积为;设圆台的高为,由体积可得,解得,所以可得圆台母线长为,根据侧面展开图可得圆台侧面积为.故答案为:15.第33届奥运会将于2024年7月26日至8月11日在法国巴黎举行.某田径运动员准备参加100米、200米两项比赛,根据以往赛事分析,该运动员100米比赛未能站上领奖台的概率为,200米比赛未能站上领奖台的概率为,两项比赛都未能站上领奖台的概率为,若该运动员在100米比赛中站上领奖台,则他在200米比赛中也站上领奖台的概率是___________.【答案】【解析】设在200米比赛中站上领奖台为事件,在100米比赛中站上领奖台为事件,则,,,,则,则,故.故答案为:.16.已知抛物线Γ:与直线围成的封闭区域中有矩形,点A,B在抛物线上,点C,D在直线上,则矩形对角线长度的最大值是___________.【答案】4【解析】如图所示:联立,解得或,得抛物线Γ与直线的两个交点分别为,由题意四边形是矩形,故,且注意到所以不妨设,又,所以,所以由图可知,联立,因此,而,由两平行线间的距离公式可知,从而,所以当且仅当时,长度取最大值是.故答案为:4.四、解答题17.在中,角、、所对的边分别为、、,已知.(1)证明:;(2)若,,求的面积.(1)证明:因为,由正弦定理得,即,即,故,因为、,所以,则,所以,,所以,或(舍),因此.(2)解:因为,故,由,因为,故,所以.18.已知数列满足,且对任意正整数m,n都有(1)求数列的通项公式;(2)求数列的前n项和.解:(1)由对任意整数均有,取,得,当时,,当时,,符合上式,所以.(2)当为偶数时,,当为奇数时,若,则,若,则,且当时,满足.综上所述:.19.如图,已知正方体的棱长为4,点E满足,点F是的中点,点G满足(1)求证:四点共面;(2)求平面与平面夹角的余弦值.(1)证明:法1:如图,取中点,分别连接,因为为中点,所以,且,所以四边形为平行四边形,所以,由知,由知,所以,所以,所以,所以四点共面;法2:如图,以为原点,建立空间直角坐标系,则,因为,所以,所以,所以四点共面;(2)解:由(1)知,,设平面法向量为,由,即,可取,平面的法向量,则有,可取,设平面与平面夹角为,则,所以平面EFG与平面夹角的余弦值为.20.已知函数(e为自然对数的底数,).(1)讨论的单调性;(2)证明:当时,(1)解:,当时,,在上单调递减;当时,由可得,故时,,时,,所以在上单调递减,在上单调递增.(2)证明:由(1)知,,只需证,即证,设,则,故时,,时,,所以在上递减,在上递增,所以,又,故,即成立,所以原不等式成立.21.某中学在运动会期间,随机抽取了200名学生参加绳子打结计时的趣味性比赛,并对学生性别与绳子打结速度快慢的相关性进行分析,得到数据如下表:性别速度合计快慢男生65女生55合计110200(1)根据以上数据,能否有99%的把握认为学生性别与绳子打结速度快慢有关?(2)现有n根绳子,共有2n个绳头,每个绳头只打一次结,且每个结仅含两个绳头,所有绳头打结完毕视为结束.(i)当,记随机变量X为绳子围成的圈的个数,求X的分布列与数学期望;(ii)求证:这n根绳子恰好能围成一个圈的概率为附:0.1000.0500.0250.010k2.7063.8415.0246.635(1)解:依题意,完善列联表如下,性别速度合计快慢男生6535100女生4555100合计11090200所以.故有的把握,认为学生性别与绳子打结速度快慢有关.(2)(i)解:由题知,随机变量的所有可能取值为,,,所以的分布列为123所以.(ii)证明:不妨令绳头编号为,可以与绳头1打结形成一个圆的绳头除了1,2外有种可能,假设绳头1与绳头3打结,那么相当于对剩下根绳子进行打结,令根绳子打结后可成圆的种数为,那么经过一次打结后,剩下根绳子打结后可成圆的种数为,由此可得,,所以,所以,显然,故;另一方面,对个绳头进行任意2个绳头打结,总共有;所以22.已知双曲线C:的焦距为6,其中一条渐近线的斜率为,过点的直线l与双曲线C的右支交于P,Q

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论