2024届吉林省松原市宁江四中学八上数学期末学业质量监测模拟试题含解析_第1页
2024届吉林省松原市宁江四中学八上数学期末学业质量监测模拟试题含解析_第2页
2024届吉林省松原市宁江四中学八上数学期末学业质量监测模拟试题含解析_第3页
2024届吉林省松原市宁江四中学八上数学期末学业质量监测模拟试题含解析_第4页
2024届吉林省松原市宁江四中学八上数学期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届吉林省松原市宁江四中学八上数学期末学业质量监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.三个等边三角形的摆放位置如图,若∠3=60°,则∠1+∠2的度数为()A.90° B.120° C.270° D.360°2.一个多边形的每一个外角都等于36,则该多边形的内角和等于()A.1080° B.900° C.1440° D.720°3.二元一次方程2x−y=1有无数多个解,下列四组值中是该方程的解是()A. B. C. D.4.如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为()A.6 B.5 C.4 D.35.已知直线y=2x经过点(1,a),则a的值为()A.a=2 B.a=-1 C.a=-2 D.a=16.下列根式中不是最简二次根式的是()A. B. C. D.7.如图,点D、E在△ABC的边BC上,△ABD≌△ACE,下列结论不一定成立的是()A. B. C. D.8.已知,如图,在△ABC中,OB和OC分别平分∠ABC和∠ACB,过O作DE∥BC,分别交AB、AC于点D、E,若BD+CE=5,则线段DE的长为()A.5 B.6 C.7 D.89.若分式的值为,则的值为A. B. C. D.10.如图,平面直角坐标系xOy中,点A在第一象限,B(2,0),∠AOB=60°,∠ABO=90°.在x轴上取一点P(m,0),过点P作直线l垂直于直线OA,将OB关于直线l的对称图形记为O′B′,当O′B′和过A点且平行于x轴的直线有交点时,m的取值范围为()A.m≥4 B.m≤6 C.4<m<6 D.4≤m≤611.如图为张晓亮的答卷,每个小题判断正确得20分,他的得分应是()A.100分 B.80分 C.60分 D.40分12.下列等式从左到右的变形是因式分解的是()A.2x(x+3)=2x2+6x B.24xy2=3x•8y2C.x2+2xy+y2+1=(x+y)2+1 D.x2﹣y2=(x+y)(x﹣y)二、填空题(每题4分,共24分)13.直线沿轴向右平移个单位长度后与两坐标轴所围成的三角形面积等于______________.14.如图,等腰△ABC中,AB=AC,折叠△ABC,使点A与点B重合,折痕为DE,若∠DBC=15°,则∠A的度数是______.15.对点的一次操作变换记为,定义其变换法则如下:;且规定(为大于1的整数).如:,,则__________.16.若分式的值为0,则x=_____________.17.如图,将△ABC沿着DE对折,点A落到A′处,若∠BDA′+∠CEA′=70°,则∠A=_____.18.写出命题“若,则”的逆命题:________.三、解答题(共78分)19.(8分)如图,已知△ABC的面积为16,BC=8,现将△ABC沿直线向右平移a(a<8)个单位到△DEF的位置.(1)求△ABC的BC边上的高.(2)连结AE、AD,设AB=5①求线段DF的长.②当△ADE是等腰三角形时,求a的值.20.(8分)在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B、C重合),以AD为直角边在AD右侧作等腰直角三角形ADE,且∠DAE=90°,连接CE.(1)如图①,当点D在线段BC上时:①BC与CE的位置关系为;②BC、CD、CE之间的数量关系为.(2)如图②,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若不成立,请你写出正确结论,并给予证明.(3)如图③,当点D在线段BC的延长线上时,BC、CD、CE之间的数量关系为.21.(8分)已知关于x的一元二次方程x2+(k﹣1)x+k﹣2=0(1)求证:方程总有两个实数根;(2)若方程有一根为正数,求实数k的取值范围.22.(10分)如图,在△ABC中,D是BC边上的点(不与点B,C重合),连结AD(1)如图1,当点D是BC边上的中点时,则S△ABD:S△ACD=_________(直接写出答案)(2)如图2,当AD是∠BAC的平分线时,若AB=m,AC=n,S△ABD:S△ACD=_________(用含m,n的代数式表示).(3)如图3,AD平分∠BAC,延长AD到E,使得AD=DE,连结BE,如果AC=2,AB=4,S△BDE=6,求△ABC的面积.23.(10分)赛龙舟是端午节的主要习俗,某市甲乙两支龙舟队在端午节期间进行划龙舟比赛,从起点驶向终点,在整个行程中,龙舟离开起点的距离(米)与时间(分钟)的对应关系如图所示,请结合图象解答下列问题:(1)起点与终点之间相距.(2)分别求甲、乙两支龙舟队的与函数关系式;(3)甲龙舟队出发多少时间时两支龙舟队相距200米?24.(10分)如图,过点A(1,3)的一次函数y=kx+6(k≠0)的图象分别与x轴,y轴相交于B,C两点.(1)求k的值;(2)直线l与y轴相交于点D(0,2),与线段BC相交于点E.(i)若直线l把△BOC分成面积比为1:2的两部分,求直线l的函数表达式;(ⅱ)连接AD,若△ADE是以AE为腰的等腰三角形,求满足条件的点E的坐标.25.(12分)(1)化简:(2)设S=,a为非零常数,对于每一个有意义的x值,都有一个S的值对应,可得下表:x…﹣3﹣2﹣113567…S…22…仔细观察上表,能直接得出方程的解为.26.(1)计算:(﹣2a2b)2+(﹣2ab)•(﹣3a3b).(2)分解因式:(a+b)2﹣4ab.

参考答案一、选择题(每题4分,共48分)1、B【分析】先根据图中是三个等边三角形可知三角形各内角等于60°,用∠1,∠2,∠3表示出△ABC各角的度数,再根据三角形内角和定理即可得出结论.【详解】∵图中是三个等边三角形,∠3=60°,

∴∠ABC=180°-60°-60°=60°,∠ACB=180°-60°-∠2=120°-∠2,

∠BAC=180°-60°-∠1=120°-∠1,

∵∠ABC+∠ACB+∠BAC=180°,

∴60°+(120°-∠2)+(120°-∠1)=180°,

∴∠1+∠2=120°.

故选B.【点睛】考查的是等边三角形的性质,熟知等边三角形各内角均等于60°是解答此题的关键.2、C【解析】解:∵任何多边形的外角和等于360°,∴多边形的边数为360°÷36°=10,∴多边形的内角和为(10﹣2)•180°=1440°.故选C.3、D【分析】将各项中x与y的值代入方程检验即可得到结果.【详解】A、把代入方程得:左边,右边=1,不相等,不合题意;

B、把代入方程得:左边,右边=1,不相等,不合题意;

C、把代入方程得:左边,右边=1,不相等,不合题意;

D、把代入方程得:左边,右边=1,相等,符合题意;

故选:D.【点睛】本题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.4、C【分析】由∠ABC=15°,AD是高,得出BD=AD后,证△ADC≌△BDH后,得到BH=AC,即可求解.【详解】∵∠ABC=15°,AD⊥BC,∴AD=BD,∠ADC=∠BDH,∵∠AHE+∠DAC=90°,∠DAC+∠C=90°,∴∠AHE=∠BHD=∠C,在△ADC与△BDH中,∴△ADC≌△BDH∴BH=AC=1.故选C.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.由∠ABC=15°,AD是高,得出BD=AD是正确解答本题的关键.5、A【分析】将点点(1,a)的坐标代入直线的解析式即可求得a的值;【详解】解:∵直线y=2x经过点P(1,a),

∴a=2×1=2;故选:A【点睛】本题考查了一次函数图象上的点的坐标特征:经过函数的某点一定在函数的图象上,并且一定满足该函数的解析式方程.6、C【详解】最简二次根式必须满足两个条件:被开方数不含分母,被开方数中不含能开的尽方的因数或因式.=2,故不是最简二次根式.故选C7、A【分析】根据全等三角形的对应边相等、对应角相等逐一判断即可.【详解】∵△ABD≌△ACE,

∴BD=CE,

∴BE=CD,故B成立,不符合题意;

∠ADB=∠AEC,

∴∠ADE=∠AED,故C成立,不符合题意;

∠BAD=∠CAE,

∴∠BAE=∠CAD,故D成立,不符合题意;

AC不一定等于CD,故A不成立,符合题意.

故选:A.【点睛】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.8、A【详解】试题分析:根据角平分线的性质可得:∠OBD=∠OBC,∠OCB=∠OCE,根据平行线的性质可得:∠OBC=∠DOB,∠OCB=∠COE,所以∠OBD=∠DOB,∠OCE=∠COE,则BD=DO,CE=OE,即DE=DO+OE=BD+CE=5.故选A【点睛】考点:等腰三角形的性质9、A【分析】根据分式值为0,分子为0,分母不为0,得出x+3=0,解方程即可得出答案.【详解】因为分式的值为,所以x+3=0,所以x=-3.故选A.【点睛】考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注:“分母不为零”这个条件不能少.10、D【分析】根据题意可以作出合适的辅助线,然后根据题意,利用分类讨论的方法可以计算出m的两个极值,从而可以得到m的取值范围.【详解】解:如图所示,当直线l垂直平分OA时,O′B′和过A点且平行于x轴的直线有交点,∵点A在第一象限,B(2,0),∠AOB=60°,∠ABO=90°,∴∠BAO=30°,OB=2,∴OA=4,∵直线l垂直平分OA,点P(m,0)是直线l与x轴的交点,∴OP=4,∴当m=4;作BB″∥OA,交过点A且平行于x轴的直线与B″,当直线l垂直平分BB″和过A点且平行于x轴的直线有交点,∵四边形OBB″O′是平行四边形,∴此时点P与x轴交点坐标为(6,0),由图可知,当OB关于直线l的对称图形为O′B′到O″B″的过程中,点P符合题目中的要求,∴m的取值范围是4≤m≤6,故选:D.【点睛】本题考查坐标与图形的变化−对称,解答本题的关键是明确题意,作出合适的辅助线,利用数形结合的思想解答.11、B【解析】解:≠,1判断正确;是有理数,2判断正确;﹣≠﹣0.6,3判断错误;∵2<<3,∴1<﹣1<2,4判断正确;数轴上有无理数,5判断正确;张晓亮的答卷,判断正确的有4个,得80分.故选B.【点睛】本题主要考查了实数的大小比较,实数的分类等知识点,属于基础知识,同学们要熟练掌握.12、D【分析】根据因式分解的定义逐个判断即可.【详解】A、不是因式分解,故本选项不符合题意;B、不是因式分解,故本选项不符合题意;C、不是因式分解,故本选项不符合题意;D、是因式分解,故本选项符合题意;故选D.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.二、填空题(每题4分,共24分)13、12.25【分析】根据“平移k不变,b值加减”可以求得新直线方程;根据新直线方程可以求得它与坐标轴的交点坐标,所以由三角形的面积公式可以求得该直线与两坐标轴围成的三角形的面积.【详解】解:平移后解析式为:当x=0时,,当y=0时,,∴平移后得到的直线与两坐标轴围成的三角形的面积为:故答案是:.【点睛】本题考查了一次函数图象与几何变换.直线平移变换的规律:上下移动,上加下减;左右移动,左加右减,掌握其中变与不变的规律是解决直线平移变换的关键.14、50°【分析】设∠A=x,根据折叠的性质可得∠DBA=∠A=x,然后根据角的关系和三角形外角的性质即可求出∠ABC和∠BDC,然后根据等边对等角即可求出∠C,最后根据三角形的内角和定理列出方程即可求出结论.【详解】解:设∠A=x,由折叠的性质可得∠DBA=∠A=x∴∠ABC=∠DBC+∠DBA=15°+x,∠BDC=∠DBA+∠A=2x∵AB=AC,∴∠ABC=∠C=15°+x∵∠C+∠DBC+∠BDC=180°∴15+x+15+2x=180解得:x=50即∠A=50°故答案为:50°.【点睛】此题考查的是折叠的性质、三角形外角的性质、等腰三角形的性质和三角形内角和定理,掌握折叠的性质、三角形外角的性质、等腰三角形的性质、三角形内角和定理和方程思想是解决此题的关键.15、【分析】根据所给的已知条件,找出题目中的变化规律,得出当n为奇数时的坐标,即可求出.【详解】解:根据题意可得:……当n为偶数时,,当n为奇数时,故,即故答案为.【点睛】本题考查了点的坐标,解题的关键是找出数字的变化规律,得出当n为奇数时的点的坐标,并根据规律解题.16、2【分析】分式的值为零,即在分母的条件下,分子即可.【详解】解:由题意知:分母且分子,∴,故答案为:.【点睛】本题考查了分式为0的条件,即:在分母有意义的前提下分子为0即可.17、35°【分析】根据折叠的性质得到∠A′DE=∠ADE,∠A′ED=∠AED,由平角的定义得到∠BDA′+2∠ADE=180°,∠A′EC+2∠AED=180°,根据已知条件得到∠ADE+∠AED=140°,由三角形的内角和即可得到结论.【详解】解:∵将△ABC沿着DE对折,A落到A′,∴∠A′DE=∠ADE,∠A′ED=∠AED,∴∠BDA′+2∠ADE=180°,∠A′EC+2∠AED=180°,∴∠BDA′+2∠ADE+∠CEA′+2∠AED=360°,∵∠BDA′+∠CEA′=70°,∴∠ADE+∠AED==145°,∴∠A=35°.故答案为:35°.【点睛】本题考查图形的折叠变化及三角形的内角和定理.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.18、若,则【分析】根据逆命题的概念直接写出即可.【详解】命题“若,则”的逆命题为:若,则,故答案为:若,则.【点睛】本题是对命题知识的考查,熟练掌握命题知识是解决本题的关键.三、解答题(共78分)19、(1)4;(2)①;②或5或6【分析】(1)根据三角形的面积公式即可求出结论;(2)①作AG⊥BC,垂足为G,根据勾股定理即可求出BG,再根据勾股定理即可求出AC,最后根据平移的性质即可求出结论;②根据等腰三角形腰的情况分类讨论,根据平移的性质、勾股定理和等腰三角形的性质分别求出结论即可.【详解】解:(1)△ABC的BC边上的高为16×2÷8=4(2)①作AG⊥BC,垂足为G,由(1)知AG=4在Rt△AGB中,AB=5,AG=43在Rt△AGC中,AG=4,GC=BC-BG=5由平移可得DF=AC=②若△ADE是等腰三角形,可分以下情况Ⅰ、当AD=AE时,由题可得:AD=BE=a=AE在Rt△AGE中,EG=a-3根据勾股定理可得:解得:Ⅱ、当AD=DE时,由平移可得DE=AB=5∴a=AD=DE=5Ⅲ、当DE=AE时,则AB=AE∵AG⊥BC∴BE=2BG=6即a=6综上可得:当a=或5或6时,△ADE是等腰三角形【点睛】此题考查的是三角形的面积公式、平移的性质、勾股定理、等腰三角形的性质,掌握三角形的面积公式、平移的性质、勾股定理、等腰三角形的性质和分类讨论的数学思想是解决此题的关键.20、(1)①BC⊥CE;②BC=CD+CE;(2)结论①成立,②不成立,结论:CD=BC+CE;(3)CE=BC+CD.【解析】(1)①利用条件求出△ABD≌△ACE,随之即可得出位置关系.②根据BD=CE,可得BC=BD+CD=CE+CD.(2)根据第二问的条件得出△ABD≌△ACE,随之即可证明结论是否成立.(3)分析新的位置关系得出△ABD≌△ACE,即可得出CE=BC+CD.【详解】(1)如图1.∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE,∠B=∠ACE=45°,①∵∠ACE=45°=∠ACB,∴∠BCE=45°+45°=90°,即BD⊥CE;②∵BD=CE,∴BC=BD+CD=CE+CD.故答案为:BC⊥CE,BC=CD+CE;(2)结论①成立,②不成立,结论:CD=BC+CE理由:如图2中,∵∠BAC=∠DAE=90°,∴∠BAC﹣∠BAE=∠DAE﹣∠BAE,即∠BAD=∠EAC.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE,∠ACE=∠ABD=135°,∴CD=BC+BD=BC+CE∵∠ACB=45°∴∠DCE=90°,∴CE⊥BC;(3)如图3中,∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD即∠BAD=∠CAE,∴在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE,∠ACE=∠ABC.∵AB=AC,∴∠ABC=∠ACB=45°,∴BD=BC+CD,即CE=BC+CD.故答案为:CE=BC+CD.【点睛】本题考查了复杂图形中证明三角形全等的条件,掌握证明条件是解题关键.21、(1)见解析;(1)k<1.【分析】(1)先求出△的值,再根据△的意义即可得到结论;(1)利用求根公式求得,然后根据方程有一根为正数列出关于k的不等式并解答.【详解】(1)△=(k﹣1)1﹣4(k﹣1)=k1﹣1k+1﹣4k+8=(k﹣3)1∵(k﹣3)1≥0,∴方程总有两个实数根.(1)∵,∴x1=﹣1,x1=1﹣k.∵方程有一个根为正数,∴1﹣k>0,k<1.【点睛】考查了根的判别式.体现了数学转化思想,属于中档题目.22、(1)1:1;(2)m∶n;(3)1【分析】(1)过A作AE⊥BC于E,根据三角形面积公式求出即可;

(2)过D作DE⊥AB于E,DF⊥AC于F,根据角平分线性质求出DE=DF,根据三角形面积公式求出即可;

(3)根据已知和(1)(2)的结论求出△ABD和△ACD的面积,即可求出答案.【详解】解:(1)过A作AE⊥BC于E,

∵点D是BC边上的中点,

∴BD=DC,

∴SABD:S△ACD=(×BD×AE):(×CD×AE)=1:1,

故答案为:1:1;

(2)过D作DE⊥AB于E,DF⊥AC于F,

∵AD为∠BAC的角平分线,

∴DE=DF,

∵AB=m,AC=n,

∴SABD:S△ACD=(×AB×DE):(×AC×DF)=m:n;

(3)∵AD=DE,

∴由(1)知:S△ABD:S△EBD=1:1,

∵S△BDE=6,

∴S△ABD=6,

∵AC=2,AB=4,AD平分∠CAB,

∴由(2)知:S△ABD:S△ACD=AB:AC=4:2=2:1,

∴S△ACD=3,

∴S△ABC=3+6=1,

故答案为:1.【点睛】本题考查了角平分线性质和三角形的面积公式,能根据(1)(2)得出规律是解此题的关键.23、(1)3000;(2)甲龙舟队的与函数关系式为,乙龙舟队的与函数关系式为;(3)甲龙舟队出发或10或15或分钟时,两支龙舟队相距200米.【分析】(1)直接根据图象即可得出答案;(2)分别用待定系数法即可求出甲、乙两支龙舟队的y与x函数关系式;(3)先求出两支龙舟队相遇的时间,然后结合图像分四种情况进行讨论,相遇前两次,相遇后两次,分别进行计算即可.【详解】(1)根据图象可知,起点与终点之间相距3000m(2)设甲龙舟队的与函数关系式为把代入,可得解得∴甲龙舟队的与函数关系式为设乙龙舟队的与函数关系式为把,代入,可得,解得∴乙龙舟队的与函数关系式为(3)令,可得即当时,两龙舟队相遇当时,令,则(符合题意);当时,令,则(符合题意);当时,令,则(符合题意);当时,令,则(符合题意);综上所述:甲龙舟队出发或10或15或分钟时,两支龙舟队相距200米.【点睛】本题主要考查一次函数的应用,掌握待定系数法并分情况讨论是解题的关键.24、(1)-3;(2)(i)y=±x+2;(ⅱ)点E的坐标为:(,)或(,).【分析】(1)将点A的坐标代入一次函数y=kx+6中,即可解得k的值;(2)(i)先求出△BCO的面积,根据直线l把△BOC分成面积比为1:2的两部得出△CDE的面积,根据三角形面积公式得出E的横坐标,将横坐标代入y=kx+6即可得到E的坐标,点E的坐标代入直线l表达式,即可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论