高二数学期末复习试题及答案_第1页
高二数学期末复习试题及答案_第2页
高二数学期末复习试题及答案_第3页
高二数学期末复习试题及答案_第4页
高二数学期末复习试题及答案_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高二数学期末考试复习试题选择题:(本大题共12小题,每小题5分,共60分)1.下列给出的赋值语句中正确的是().A.B.C.D.2.在如图所示的“茎叶图”表示的数据中,众数和中位数分别().12420356124203563011412B.31与26C.24与30D.26与303.图l是某县参加2007年高考的学生身高条形统计图,从左到右的各条形表示的学生人数依次记为、、…、(如表示身高(单位:)在[150,155)内的学生人数).图2是统计图l中身高在一定范围内学生人数的一个算法流程图.现要统计身高在160~180(含160,不含180)的学生人数,那么在流程图中的判断框内应填写的条件是,4.将一个各个面上均涂有颜色的正方体锯成个同样大小的小正方体,从这些小正方体中任取1个,则其中三面都涂有颜色的概率为()(A)(B)(C)(D)5.函数,在定义域内任取一点,使的概率是().A. B. C. D.6.有外形相同的球分装三个盒子,每盒10个.其中,第一个盒子中7个球标有字母A、3个球标有字母B;第二个盒子中有红球和白球各5个;第三个盒子中则有红球8个,白球2个.试验按如下规则进行:先在第一号盒子中任取一球,若取得标有字母A的球,则在第二号盒子中任取一个球;若第一次取得标有字母B的球,则在第三号盒子中任取一个球.如果第二次取出的是红球,则称试验成功,那么试验成功的概率为()A.0.59 B.0.54 C.0.8 D.7.两位同学一起去一家单位应聘,面试前单位负责人对他们说:“我们要从面试的人中招聘3人,你们俩同时被招聘进来的概率是1/70.根据这位负责人的话可以推断出参加面试的人数为()A.21 B.35 C.42 D.708.某厂生产的零件外直径ξ~N(10,0.04),今从该厂上、下午生产的零件中各随机取出一个,测得其外直径分别为9.9cm和A.上午生产情况正常,下午生产情况异常B.上午生产情况异常,下午生产情况正常C.上、下午生产情况均正常D.上、下午生产情况均异常9.的展开式中,的系数是()A. B. C.297 D.20710.四棱锥的8条棱分别代表8种不同的化工产品,有公共点的两条棱所代表的化工产品在同一仓库中存放是危险的,没有公共点的棱所代表的化工产品在同一仓库中存放是安全的。现有编号为①②③④的四个仓库,用来存放这8种化工产品,则安全存放的不同方法总数为()A.96B.48C.24D.0二、填空题:(共5小题,每题5分,共25分)11.设,则NY输入xyNY输入xy=7输出y结束开始①13.某地区打的士收费办法如下:不超过2公里收7元,超过2公里时,每车收燃油附加费1元,并且超过的里程每公里收2.6元,(其他因素不考虑)计算收费标准的框图如图所示,则①处应填.14.有4条线段,长度分别为1,3,5,7,从这四条线段中任取三条,则所取三条线段能构成一个三角形的概率为.15.已知直线中的a,b,c是取自集合{-3,-2,-1,0,1,2,3}中的3个不同的元素,并且该直线的倾斜角为锐角,则符合这些条件的直线的条数为。三、解答题:(解答题应书写合理的解答或推理过程.)16、(1)把“五进制”数转化为“十进制”数,再把它转化为“八进制”数.(2)用辗转相除法或者更相减损术求三个数的最大公约数.17.甲盒中有红、黑、白三种颜色的球各3个,乙盒子中有黄、黑、白三种颜色的球各2个,从两个盒子中各取1个球。(1)求取出的两个球是不同颜色的概率.(2)请设计一种随机模拟的方法,来近似计算(1)中取出两个球是不同

颜色的概率(写出模拟的步骤).18.已知从“神六”飞船带回的某种植物种子每粒成功发芽的概率都为,某植物研究所进行该种子的发芽实验,每次实验种一粒种子,每次实验结果相互独立,假定某次实验种子发芽则称该次实验是成功的,如果种子没有发芽,则称该次实验是失败。若该研究所共进行四次实验,设ξ表示四次实验结束时实验成功的次数与失败的次数之差的绝对值。(Ⅰ)求随机变量ξ的数学期望Eξ;(Ⅱ)记“不等式ξx2-ξx+1>0的解集是实数集R”为事件A,求事件A发生的概率P(A)。19.某休闲场馆举行圣诞酬宾活动,每位会员交会员费50元,可享受20元的消费,并参加一次抽奖活动,从一个装有标号分别为1,2,3,4,5,6的6只均匀小球的抽奖箱中,有放回的抽两次球,抽得的两球标号之和为12,则获一等奖价值a元的礼品,标号之和为11或10,获二等奖价值100元的礼品,标号之和小于10不得奖.(1)求各会员获奖的概率;(2)设场馆收益为ξ元,求ξ的分布列;假如场馆打算不赔钱,a最多可设为多少元?20.现在要对某个学校今年将要毕业的900名高三毕业生进行乙型肝炎病毒检验,可以利用两种方法.①对每个人的血样分别化验,这时共需要化验900次;②把每个人的血样分成两份,取其中m个人的血样各一份混合在一起作为一组进行化验,如果结果为阴性,那么对这m个人只需这一次检验就够了;如果结果为阳性,那么再对这m个人的另一份血样逐个化验,这时对这m个人一共需要m+1次检验.据统计报道,对所有人来说,化验结果为阳性的概率为0.1.(1)求当m=3时,一个小组经过一次检验就能确定化验结果的概率是多少?(2)试比较在第二种方法中,m=4和m=6哪种分组方法所需要的化验次数更少一些?21.甲有一个箱子,里面放有x个红球,y个白球(x,y≥0,且x+y=4);乙有一个箱子,里面放有2个红球,1个白球,1个黄球.现在甲从箱子里任取2个球,乙从箱子里任取1个球.若取出的3个球颜色全不相同,则甲获胜.(1)试问甲如何安排箱子里两种颜色球的个数,才能使自己获胜的概率最大?(2)在(1)的条件下,求取出的3个球中红球个数的期望.选择题1-10BBBCCAAADB二.填空题11.12.3/713.y=2.6x+2.814.15.4316(1).解:∴.(2)解:324=243×1+81243=81×3+0则324与243的最大公约数为81又135=81×1+5481=54×1+2754=27×2+0则81与135的最大公约数为27所以,三个数324、243、135的最大公约数为27.另法∴为所求.17、(1)设A=“取出的两球是相同颜色”,B=“取出的两球是不同颜色”.则事件A的概率为:P(A)==由于事件A与事件B是对立事件,所以事件B的概率为:P(B)=1-P(A)=1-=(2)随机模拟的步骤:第1步:利用抓阄法或计算机(计算器)产生1~3和2~4两组取整数值的随机数,每组各有N个随机数。用“1”表示取到红球,用“2”表示取到黑球,用“3”表示取到白球,用“4”表示取到黄球。第2步:统计两组对应的N对随机数中,每对中的两个数字不同的对数n。第3步:计算的值。则就是取出的两个球是不同颜色的概率的近似值。18、解析:(Ⅰ)由题意知:ξ的可能取值为0,2,4。“ξ=0”指的是实验成功2次,失败2次;“ξ=2”指的是实验成功3次,失败1次或实验成功1次,失败3次;“ξ=4”指的是实验成功4次,失败0次或实验成功0次,失败4次;故随机变量ξ的数学期望Eξ为(Ⅱ)由题意知:“不等式ξx2-ξx+1>0的解集是实数集R”为事件A。当ξ=0时,不等式1>0的解集是R,说明事件A发生;当ξ=2时,不等式2x2-2x+1>0的解集是实数集R,因为成立,说明事件A发生;当ξ=4时,不等式4x2-4x+1>0的解集是,因为不成立,说明事件A不发生。故事件A发生的概率P(A)为19、解:(1)抽两次得标号之和为12的概率为;抽两次得标号之和为11或10的概率为,故各会员获奖的概率为.(2)30由,得元.所以最多可设为580元.20、解:(1)当时,一个小组有3个人,经过一次检验就能确定化验结果是指经过一次检验,结果为阴性,所以概率为;(2)当时,一个小组有4个人,这时每个人需要检验的次数是一个随机变量,其分布列为所以;当时,一个小组有6个人,这时需要检验的次数是一个随机变量,其分布列为所以,由于,因此当每4个人一组时所需要的化验次数更少一些.21、(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论