




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省养鹿中学2024年中考五模数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x﹣k)2+h.已知球与D点的水平距离为6m时,达到最高2.6m,球网与D点的水平距离为9m.高度为2.43m,球场的边界距O点的水平距离为18m,则下列判断正确的是()A.球不会过网 B.球会过球网但不会出界C.球会过球网并会出界 D.无法确定2.如图是某个几何体的展开图,该几何体是()A.三棱柱 B.三棱锥 C.圆柱 D.圆锥3.如图是一个几何体的三视图,则这个几何体是()A. B. C. D.4.如图,两个反比例函数y1=(其中k1>0)和y2=在第一象限内的图象依次是C1和C2,点P在C1上.矩形PCOD交C2于A、B两点,OA的延长线交C1于点E,EF⊥x轴于F点,且图中四边形BOAP的面积为6,则EF:AC为()A.:1 B.2: C.2:1 D.29:145.不等式组1-x≤0,3x-6<0A. B. C. D.6.小明早上从家骑自行车去上学,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达学校,小明骑自行车所走的路程s(单位:千米)与他所用的时间t(单位:分钟)的关系如图所示,放学后,小明沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上学时一致,下列说法:①小明家距学校4千米;②小明上学所用的时间为12分钟;③小明上坡的速度是0.5千米/分钟;④小明放学回家所用时间为15分钟.其中正确的个数是()A.1个 B.2个 C.3个 D.4个7.如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E、F、G、H分别为边AD、AB、BC、CD的中点.若AC=10,BD=6,则四边形EFGH的面积为()A.20 B.15 C.30 D.608.已知圆A的半径长为4,圆B的半径长为7,它们的圆心距为d,要使这两圆没有公共点,那么d的值可以取()A.11; B.6; C.3; D.1.9.在2018年新年贺词中说道:“安得广厦千万间,大庇天下寒士俱欢颜!2017年我国3400000贫困人口实现易地扶贫搬迁、有了温暖的新家.”其中3400000用科学记数法表示为()A.0.34×107 B.3.4×106 C.3.4×105 D.34×10510.某大型企业员工总数为28600人,数据“28600”用科学记数法可表示为()A.0.286×105B.2.86×105C.28.6×103D.2.86×104二、填空题(共7小题,每小题3分,满分21分)11.计算:=_________
.12.从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:种子粒数100400800100020005000发芽种子粒数8531865279316044005发芽频率0.8500.7950.8150.7930.8020.801根据以上数据可以估计,该玉米种子发芽的概率为___________(精确到0.1).13.若正多边形的一个内角等于140°,则这个正多边形的边数是_______.14.甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少,若设甲每小时检测个,则根据题意,可列出方程:__________.15.已知梯形ABCD,AD∥BC,BC=2AD,如果AB=a,AC=b,那么DA=_____(用16.如图,折叠长方形纸片ABCD,先折出对角线BD,再将AD折叠到BD上,得到折痕DE,点A的对应点是点F,若AB=8,BC=6,则AE的长为_____.17.的算术平方根为______.三、解答题(共7小题,满分69分)18.(10分)如图,反比例y=的图象与一次函数y=kx﹣3的图象在第一象限内交于A(4,a).(1)求一次函数的解析式;(2)若直线x=n(0<n<4)与反比例函数和一次函数的图象分别交于点B,C,连接AB,若△ABC是等腰直角三角形,求n的值.19.(5分)如图,过点A(2,0)的两条直线,分别交y轴于B,C,其中点B在原点上方,点C在原点下方,已知AB=.求点B的坐标;若△ABC的面积为4,求的解析式.20.(8分)如图,点A是反比例函数y1=4x与一次函数y2=kx+b在x轴上方的图象的交点,过点A作AC⊥x轴,垂足是点C,AC=OC.一次函数求点A的坐标;若梯形ABOC的面积是3,求一次函数y2=kx+b的解析式;结合这两个函数的完整图象:当y1>21.(10分)某企业信息部进行市场调研发现:信息一:如果单独投资A种产品,所获利润yA(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:x(万元)122.535yA(万元)0.40.811.22信息二:如果单独投资B种产品,则所获利润yB(万元)与投资金额x(万元)之间存在二次函数关系:yB=ax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元.(1)求出yB与x的函数关系式;(2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示yA与x之间的关系,并求出yA与x的函数关系式;(3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?22.(10分)如图1,在等腰△ABC中,AB=AC,点D,E分别为BC,AB的中点,连接AD.在线段AD上任取一点P,连接PB,PE.若BC=4,AD=6,设PD=x(当点P与点D重合时,x的值为0),PB+PE=y.小明根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整:(1)通过取点、画图、计算,得到了x与y的几组值,如下表:x0123456y5.24.24.65.97.69.5说明:补全表格时,相关数值保留一位小数.(参考数据:≈1.414,≈1.732,≈2.236)(2)建立平面直角坐标系(图2),描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)求函数y的最小值(保留一位小数),此时点P在图1中的什么位置.23.(12分)如图,儿童游乐场有一项射击游戏.从O处发射小球,将球投入正方形篮筐DABC.正方形篮筐三个顶点为A(2,2),B(3,2),D(2,3).小球按照抛物线y=﹣x2+bx+c飞行.小球落地点P坐标(n,0)(1)点C坐标为;(2)求出小球飞行中最高点N的坐标(用含有n的代数式表示);(3)验证:随着n的变化,抛物线的顶点在函数y=x2的图象上运动;(4)若小球发射之后能够直接入篮,球没有接触篮筐,请直接写出n的取值范围.24.(14分)如图,△ABC内接于⊙O,∠B=600,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若PD=,求⊙O的直径.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解题分析】分析:(1)将点A(0,2)代入求出a的值;分别求出x=9和x=18时的函数值,再分别与2.43、0比较大小可得.详解:根据题意,将点A(0,2)代入得:36a+2.6=2,解得:∴y与x的关系式为当x=9时,∴球能过球网,当x=18时,∴球会出界.故选C.点睛:考查二次函数的应用题,求范围的问题,可以利用临界点法求出自变量的值,根据题意确定范围.2、A【解题分析】
侧面为长方形,底面为三角形,故原几何体为三棱柱.【题目详解】解:观察图形可知,这个几何体是三棱柱.故本题选择A.【题目点拨】会观察图形的特征,依据侧面和底面的图形确定该几何体是解题的关键.3、B【解题分析】试题分析:结合三个视图发现,应该是由一个正方体在一个角上挖去一个小正方体,且小正方体的位置应该在右上角,故选B.考点:由三视图判断几何体.4、A【解题分析】试题分析:首先根据反比例函数y2=的解析式可得到=×3=,再由阴影部分面积为6可得到=9,从而得到图象C1的函数关系式为y=,再算出△EOF的面积,可以得到△AOC与△EOF的面积比,然后证明△EOF∽△AOC,根据对应边之比等于面积比的平方可得到EF﹕AC=.故选A.考点:反比例函数系数k的几何意义5、D【解题分析】试题分析:1-x≤0①3x-6<0②,由①得:x≥1,由②得:x<2,在数轴上表示不等式的解集是:,故选D.考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组.6、C【解题分析】
从开始到A是平路,是1千米,用了3分钟,则从学校到家门口走平路仍用3分钟,根据图象求得上坡(AB段)、下坡(B到学校段)的路程与速度,利用路程除以速度求得每段所用的时间,相加即可求解.【题目详解】解:①小明家距学校4千米,正确;②小明上学所用的时间为12分钟,正确;③小明上坡的速度是千米/分钟,错误;④小明放学回家所用时间为3+2+10=15分钟,正确;故选:C.【题目点拨】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.7、B【解题分析】
有一个角是直角的平行四边形是矩形.利用中位线定理可得出四边形EFGH是矩形,根据矩形的面积公式解答即可.【题目详解】∵点E、F分别为四边形ABCD的边AD、AB的中点,∴EF∥BD,且EF=BD=1.同理求得EH∥AC∥GF,且EH=GF=AC=5,又∵AC⊥BD,∴EF∥GH,FG∥HE且EF⊥FG.四边形EFGH是矩形.∴四边形EFGH的面积=EF•EH=1×5=2,即四边形EFGH的面积是2.故选B.【题目点拨】本题考查的是中点四边形.解题时,利用了矩形的判定以及矩形的定理,矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(1)对角线互相平分且相等的四边形是矩形.8、D【解题分析】∵圆A的半径长为4,圆B的半径长为7,它们的圆心距为d,∴当d>4+7或d<7-4时,这两个圆没有公共点,即d>11或d<3,∴上述四个数中,只有D选项中的1符合要求.故选D.点睛:两圆没有公共点,存在两种情况:(1)两圆外离,此时圆心距>两圆半径的和;(1)两圆内含,此时圆心距<大圆半径-小圆半径.9、B【解题分析】
解:3400000=.故选B.10、D【解题分析】
用科学记数法表示较大的数时,一般形式为a×10﹣n,其中1≤|a|<10,n为整数,据此判断即可【题目详解】28600=2.86×1.故选D.【题目点拨】此题主要考查了用科学记数法表示较大的数,一般形式为a×10﹣n,其中1≤|a|<10,确定a与n的值是解题的关键二、填空题(共7小题,每小题3分,满分21分)11、2【解题分析】
利用平方差公式求解,即可求得答案.【题目详解】=()2-()2=5-3=2.故答案为2.【题目点拨】此题考查了二次根式的乘除运算.此题难度不大,注意掌握平方差公式的应用.12、1.2【解题分析】
仔细观察表格,发现大量重复试验发芽的频率逐渐稳定在1.2左右,从而得到结论.【题目详解】∵观察表格,发现大量重复试验发芽的频率逐渐稳定在1.2左右,∴该玉米种子发芽的概率为1.2,故答案为1.2.【题目点拨】考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.13、1【解题分析】试题分析:此题主要考查了多边形的外角与内角,做此类题目,首先求出正多边形的外角度数,再利用外角和定理求出求边数.首先根据求出外角度数,再利用外角和定理求出边数.∵正多边形的一个内角是140°,∴它的外角是:180°-140°=40°,360°÷40°=1.故答案为1.考点:多边形内角与外角.14、【解题分析】【分析】若设甲每小时检测个,检测时间为,乙每小时检测个,检测时间为,根据甲检测300个比乙检测200个所用的时间少,列出方程即可.【解答】若设甲每小时检测个,检测时间为,乙每小时检测个,检测时间为,根据题意有:.故答案为【点评】考查分式方程的应用,解题的关键是找出题目中的等量关系.15、1【解题分析】
根据向量的三角形法则表示出CB,再根据BC、AD的关系解答.【题目详解】如图,∵AB=a,∴CB=AB-AC=a-b,∵AD∥BC,BC=2AD,∴DA=12CB=12(a-b)=1故答案为12a-【题目点拨】本题考查了平面向量,梯形,向量的问题,熟练掌握三角形法则和平行四边形法则是解题的关键.16、3【解题分析】
先利用勾股定理求出BD,再求出DF、BF,设AE=EF=x.在Rt△BEF中,由EB2=EF2+BF2,列出方程即可解决问题.【题目详解】∵四边形ABCD是矩形,∴∠A=90°.∵AB=8,AD=6,∴BD1.∵△DEF是由△DEA翻折得到,∴DF=AD=6,BF=2.设AE=EF=x.在Rt△BEF中,∵EB2=EF2+BF2,∴(8﹣x)2=x2+22,解得:x=3,∴AE=3.故答案为:3.【题目点拨】本题考查了矩形的性质、勾股定理等知识,解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.17、【解题分析】
首先根据算术平方根的定义计算先=2,再求2的算术平方根即可.【题目详解】∵=2,∴的算术平方根为.【题目点拨】本题考查了算术平方根,属于简单题,熟悉算数平方根的概念是解题关键.三、解答题(共7小题,满分69分)18、(1)y=x﹣3(2)1【解题分析】
(1)由已知先求出a,得出点A的坐标,再把A的坐标代入一次函数y=kx-3求出k的值即可求出一次函数的解析式;(2)易求点B、C的坐标分别为(n,),(n,n-3).设直线y=x-3与x轴、y轴分别交于点D、E,易得OD=OE=3,那么∠OED=45°.根据平行线的性质得到∠BCA=∠OED=45°,所以当△ABC是等腰直角三角形时只有AB=AC一种情况.过点A作AF⊥BC于F,根据等腰三角形三线合一的性质得出BF=FC,依此得出方程-1=1-(n-3),解方程即可.【题目详解】解:(1)∵反比例y=的图象过点A(4,a),∴a==1,∴A(4,1),把A(4,1)代入一次函数y=kx﹣3,得4k﹣3=1,∴k=1,∴一次函数的解析式为y=x﹣3;(2)由题意可知,点B、C的坐标分别为(n,),(n,n﹣3).设直线y=x﹣3与x轴、y轴分别交于点D、E,如图,当x=0时,y=﹣3;当y=0时,x=3,∴OD=OE,∴∠OED=45°.∵直线x=n平行于y轴,∴∠BCA=∠OED=45°,∵△ABC是等腰直角三角形,且0<n<4,∴只有AB=AC一种情况,过点A作AF⊥BC于F,则BF=FC,F(n,1),∴﹣1=1﹣(n﹣3),解得n1=1,n2=4,∵0<n<4,∴n2=4舍去,∴n的值是1.【题目点拨】本题考查了反比例函数与一次函数的交点问题,待定系数法求一次函数的解析式,等腰直角三角形的性质,难度适中.19、(1)(0,3);(2).【解题分析】
(1)在Rt△AOB中,由勾股定理得到OB=3,即可得出点B的坐标;(2)由=BC•OA,得到BC=4,进而得到C(0,-1).设的解析式为,把A(2,0),C(0,-1)代入即可得到的解析式.【题目详解】(1)在Rt△AOB中,∵,∴,∴OB=3,∴点B的坐标是(0,3).(2)∵=BC•OA,∴BC×2=4,∴BC=4,∴C(0,-1).设的解析式为,把A(2,0),C(0,-1)代入得:,∴,∴的解析式为是.考点:一次函数的性质.20、(1)点A的坐标为(2,2);(2)y=12x+1;(3)x<-4【解题分析】
(1)点A在反比例函数y1=4x上,AC⊥x轴,(2)梯形面积=12(OB+2)×2=3,求出B点坐标,将点A(3)结合图象直接可求解;【题目详解】解:(1)∵点A在y1=4x的图像上,∴AC⋅OC=4,∴AC=OC=2∴点A的坐标为(2,2);(2)∵梯形ABOC的面积是3,∴12解得OB=1,∴点B的坐标为(0,1),把点A(2,2)与B(0,1)代入y得2=2k+b解得:k=12,∴一次函数y2=kx+b的解析式为(3)由题意可知,作出函数y1=4设函数y1=4∴联立y1=4∴点E的坐标为(-4,-1)∵y1>y2即∴可将图像分割成如下图所示:由图像可知y1>y2所对应的自变量的取值范围为:【题目点拨】本题考查反比例函数和一次函数的图形及性质;能够熟练掌握待定系数法求函数的表达式,数形结合求x的取值范围是解题的关键.21、(1)yB=-0.2x2+1.6x(2)一次函数,yA=0.4x(3)该企业投资A产品12万元,投资B产品3万元,可获得最大利润7.8万元【解题分析】
(1)用待定系数法将坐标(2,2.4)(4,3.2)代入函数关系式yB=ax2+bx求解即可;(2)根据表格中对应的关系可以确定为一次函数,通过待定系数法求得函数表达式;(3)根据等量关系“总利润=投资A产品所获利润+投资B产品所获利润”列出函数关系式求得最大值【题目详解】解:(1)yB=-0.2x2+1.6x,(2)一次函数,yA=0.4x,(3)设投资B产品x万元,投资A产品(15-x)万元,投资两种产品共获利W万元,则W=(-0.2x2+1.6x)+0.4(15-x)=-0.2x2+1.2x+6=-0.2(x-3)2+7.8,∴当x=3时,W最大值=7.8,答:该企业投资A产品12万元,投资B产品3万元,可获得最大利润7.8万元.22、(1)4.5(2)根据数据画图见解析;(3)函数y的最小值为4.2,线段AD上靠近D点三等分点处.【解题分析】
(1)取点后测量即可解答;(2)建立坐标系后,描点、连线画出图形即可;(3)根据所画的图象可知函数y的最小值为4.2,此时点P在图1中的位置为.线段AD上靠近D点三等分点处.【题目详解】(1)根据题意,作图得,y=4.5故答案为:4.5(2)根据数据画图得(3)根据图象,函数y的最小值为4.2,此时点P在图1中的位置为.线段AD上靠近D点三等分点处.【题目点拨】本题为动点问题的函数图象问题,正确作出图象,利用数形结合思
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 林业资源利用保护协议
- 电子签名与数据传输加密合作协议
- 城市商标转让协议书范本
- 椎管内肿瘤切除术的手术配合
- 辽宁房产分割协议书范本
- 经济赠与协议书范本
- FS课件转换方法
- 自考中小学教育管理
- 运输汽车挂靠协议书范本
- 统计培训课件评分表格
- 2025-2030中国遥控武器站行业现状调研与前景趋势预测报告
- 内蒙古呼伦贝尔能源投资开发有限责任公司招聘笔试真题2024
- 水淹车培训课件
- WST821-2023托育机构质量评估标准
- 2025至2030中国循环肿瘤细胞(CTC)行业发展趋势分析与未来投资战略咨询研究报告
- 2025至2030中国大型连锁超市行业发展趋势分析与未来投资战略咨询研究报告
- T-GDMDMA 0044-2025 一次性使用血液灌流器的临床使用指南
- 2025-2030年中国鳕鱼肠行业市场发展分析及发展前景与投资策略研究报告
- 2025-2030年中国智慧应急行业市场深度调研及市场前瞻与投资策略研究报告
- 2025年全国统一高考语文试卷(全国一卷)含答案
- 前台物业收费管理制度
评论
0/150
提交评论