版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广西壮族自治区崇左市宁明县2024届中考数学五模试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(共10小题,每小题3分,共30分)1.下列几何体中,其三视图都是全等图形的是()A.圆柱 B.圆锥 C.三棱锥 D.球2.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A. B. C. D.3.下列说法中,正确的个数共有()(1)一个三角形只有一个外接圆;(2)圆既是轴对称图形,又是中心对称图形;(3)在同圆中,相等的圆心角所对的弧相等;(4)三角形的内心到该三角形三个顶点距离相等;A.1个B.2个C.3个D.4个4.如图,等腰△ABC的底边BC与底边上的高AD相等,高AD在数轴上,其中点A,D分别对应数轴上的实数﹣2,2,则AC的长度为()A.2 B.4 C.2 D.45.如图,将△ABC绕点C旋转60°得到△A′B′C′,已知AC=6,BC=4,则线段AB扫过的图形面积为()A. B. C.6π D.以上答案都不对6.y=(m﹣1)x|m|+3m表示一次函数,则m等于()A.1 B.﹣1 C.0或﹣1 D.1或﹣17.如图,将边长为2cm的正方形OABC放在平面直角坐标系中,O是原点,点A的横坐标为1,则点C的坐标为()A.(,-1) B.(2,﹣1) C.(1,-) D.(﹣1,)8.如图,网格中的每个小正方形的边长是1,点M,N,O均为格点,点N在⊙O上,若过点M作⊙O的一条切线MK,切点为K,则MK=()A.3 B.2 C.5 D.9.在如图的计算程序中,y与x之间的函数关系所对应的图象大致是()A. B. C. D.10.如图,四边形ABCD是菱形,对角线AC,BD交于点O,,,于点H,且DH与AC交于G,则OG长度为A. B. C. D.二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,直线y1=kx+n(k≠0)与抛物线y2=ax2+bx+c(a≠0)分别交于A(﹣1,0),B(2,﹣3)两点,那么当y1>y2时,x的取值范围是_____.12.如图,C为半圆内一点,O为圆心,直径AB长为1cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为_________cm1.13.如图,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,点D是BC上一动点,连接AD,将△ACD沿AD折叠,点C落在点E处,连接DE交AB于点F,当△DEB是直角三角形时,DF的长为_____.14.如图,矩形ABCD的对角线BD经过的坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=的图象上,若点A的坐标为(﹣2,﹣3),则k的值为_____.15.将点P(﹣1,3)绕原点顺时针旋转180°后坐标变为_____.16.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为_________元.三、解答题(共8题,共72分)17.(8分)“六一”儿童节前夕,某县教育局准备给留守儿童赠送一批学习用品,先对红星小学的留守儿童人数进行抽样统计,发现各班留守儿童人数分别为6名,7名,8名,10名,12名这五种情形,并绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)该校有_____个班级,补全条形统计图;(2)求该校各班留守儿童人数数据的平均数,众数与中位数;(3)若该镇所有小学共有60个教学班,请根据样本数据,估计该镇小学生中,共有多少名留守儿童.18.(8分)如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD,等边△ABE,已知∠BAC=30°,EF⊥AB,垂足为F,连接DF试说明AC=EF;求证:四边形ADFE是平行四边形.19.(8分)请根据图中提供的信息,回答下列问题:一个水瓶与一个水杯分别是多少元?甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和n(n>10,且n为整数)个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)20.(8分)如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE始终经过点A,EF与AC交于M点.(1)求证:△ABE∽△ECM;(2)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由;(3)当线段AM最短时,求重叠部分的面积.21.(8分)剪纸是中国传统的民间艺术,它画面精美,风格独特,深受大家喜爱,现有三张不透明的卡片,其中两张卡片的正面图案为“金鱼”,另外一张卡片的正面图案为“蝴蝶”,卡片除正面剪纸图案不同外,其余均相同.将这三张卡片背面向上洗匀从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求抽出的两张卡片上的图案都是“金鱼”的概率.(图案为“金鱼”的两张卡片分别记为A1、A2,图案为“蝴蝶”的卡片记为B)22.(10分)(1)如图1,在矩形ABCD中,点O在边AB上,∠AOC=∠BOD,求证:AO=OB;(2)如图2,AB是⊙O的直径,PA与⊙O相切于点A,OP与⊙O相交于点C,连接CB,∠OPA=40°,求∠ABC的度数.23.(12分)某快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本).若每份套餐售价不超过10元,每天可销售400份;若每份套餐售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价(元)取整数,用(元)表示该店每天的利润.若每份套餐售价不超过10元.①试写出与的函数关系式;②若要使该店每天的利润不少于800元,则每份套餐的售价应不低于多少元?该店把每份套餐的售价提高到10元以上,每天的利润能否达到1560元?若能,求出每份套餐的售价应定为多少元时,既能保证利润又能吸引顾客?若不能,请说明理由.24.某工厂准备用图甲所示的A型正方形板材和B型长方形板材,制作成图乙所示的竖式和横式两种无盖箱子.若该工厂准备用不超过10000元的资金去购买A,B两种型号板材,并全部制作竖式箱子,已知A型板材每张30元,B型板材每张90元,求最多可以制作竖式箱子多少只?若该工厂仓库里现有A型板材65张、B型板材110张,用这批板材制作两种类型的箱子,问制作竖式和横式两种箱子各多少只,恰好将库存的板材用完?若该工厂新购得65张规格为的C型正方形板材,将其全部切割成A型或B型板材不计损耗,用切割成的板材制作两种类型的箱子,要求竖式箱子不少于20只,且材料恰好用完,则能制作两种箱子共______只
参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解题分析】分析:任意方向上的视图都是全等图形的几何体只有球,在任意方向上的视图都是圆,其他的几何体的视图都有不同的.详解:圆柱,圆锥,三棱锥,球中,三视图都是全等图形的几何体只有球,在任意方向上的视图都是圆,故选D.点睛:本题考查简单几何体的三视图,本题解题的关键是看出各个图形的在任意方向上的视图.2、B【解题分析】由中心对称图形的定义:“把一个图形绕一个点旋转180°后,能够与自身完全重合,这样的图形叫做中心对称图形”分析可知,上述图形中,A、C、D都不是中心对称图形,只有B是中心对称图形.故选B.3、C【解题分析】
根据外接圆的性质,圆的对称性,三角形的内心以及圆周角定理即可解出.【题目详解】(1)一个三角形只有一个外接圆,正确;(2)圆既是轴对称图形,又是中心对称图形,正确;(3)在同圆中,相等的圆心角所对的弧相等,正确;(4)三角形的内心是三个内角平分线的交点,到三边的距离相等,错误;故选:C.【题目点拨】此题考查了外接圆的性质,三角形的内心及轴对称和中心对称的概念,要求学生对这些概念熟练掌握.4、C【解题分析】
根据等腰三角形的性质和勾股定理解答即可.【题目详解】解:∵点A,D分别对应数轴上的实数﹣2,2,∴AD=4,∵等腰△ABC的底边BC与底边上的高AD相等,∴BC=4,∴CD=2,在Rt△ACD中,AC=,故选:C.【题目点拨】此题考查等腰三角形的性质,注意等腰三角形的三线合一,熟练运用勾股定理.5、D【解题分析】
从图中可以看出,线段AB扫过的图形面积为一个环形,环形中的大圆半径是AC,小圆半径是BC,圆心角是60度,所以阴影面积=大扇形面积-小扇形面积.【题目详解】阴影面积=π.
故选D.【题目点拨】本题的关键是理解出,线段AB扫过的图形面积为一个环形.6、B【解题分析】由一次函数的定义知,|m|=1且m-1≠0,所以m=-1,故选B.7、A【解题分析】
作AD⊥y轴于D,作CE⊥y轴于E,则∠ADO=∠OEC=90°,得出∠1+∠1=90°,由正方形的性质得出OC=AO,∠1+∠3=90°,证出∠3=∠1,由AAS证明△OCE≌△AOD,得到OE=AD=1,CE=OD=,即可得出结果.【题目详解】解:作AD⊥y轴于D,作CE⊥y轴于E,如图所示:则∠ADO=∠OEC=90°,∴∠1+∠1=90°.∵AO=1,AD=1,∴OD=,∴点A的坐标为(1,),∴AD=1,OD=.∵四边形OABC是正方形,∴∠AOC=90°,OC=AO,∴∠1+∠3=90°,∴∠3=∠1.在△OCE和△AOD中,∵,∴△OCE≌△AOD(AAS),∴OE=AD=1,CE=OD=,∴点C的坐标为(,﹣1).故选A.【题目点拨】本题考查了正方形的性质、坐标与图形性质、全等三角形的判定与性质;熟练掌握正方形的性质,证明三角形全等得出对应边相等是解决问题的关键.8、B【解题分析】
以OM为直径作圆交⊙O于K,利用圆周角定理得到∠MKO=90°.从而得到KM⊥OK,进而利用勾股定理求解.【题目详解】如图所示:MK=.故选:B.【题目点拨】考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.9、A【解题分析】函数→一次函数的图像及性质10、B【解题分析】试题解析:在菱形中,,,所以,,在中,,因为,所以,则,在中,由勾股定理得,,由可得,,即,所以.故选B.二、填空题(本大题共6个小题,每小题3分,共18分)11、﹣1<x<2【解题分析】
根据图象得出取值范围即可.【题目详解】解:因为直线y1=kx+n(k≠0)与抛物线y2=ax2+bx+c(a≠0)分别交于A(﹣1,0),B(2,﹣3)两点,所以当y1>y2时,﹣1<x<2,故答案为﹣1<x<2【题目点拨】此题考查二次函数与不等式,关键是根据图象得出取值范围.12、【解题分析】
根据直角三角形的性质求出OC、BC,根据扇形面积公式计算即可.【题目详解】解:∵∠BOC=60°,∠BCO=90°,∴∠OBC=30°,∴OC=OB=1则边BC扫过区域的面积为:故答案为.【题目点拨】考核知识点:扇形面积计算.熟记公式是关键.13、或【解题分析】试题分析:如图4所示;点E与点C′重合时.在Rt△ABC中,BC==4.由翻折的性质可知;AE=AC=3、DC=DE.则EB=2.设DC=ED=x,则BD=4﹣x.在Rt△DBE中,DE2+BE2=DB2,即x2+22=(4﹣x)2.解得:x=.∴DE=.如图2所示:∠EDB=90时.由翻折的性质可知:AC=AC′,∠C=∠C′=90°.∵∠C=∠C′=∠CDC′=90°,∴四边形ACDC′为矩形.又∵AC=AC′,∴四边形ACDC′为正方形.∴CD=AC=3.∴DB=BC﹣DC=4﹣3=4.∵DE∥AC,∴△BDE∽△BCA.∴,即.解得:DE=.点D在CB上运动,∠DBC′<90°,故∠DBC′不可能为直角.考点:翻折变换(折叠问题).14、1或﹣1【解题分析】
根据矩形的对角线将矩形分成面积相等的两个直角三角形,找到图中的所有矩形及相等的三角形,即可推出S四边形CEOF=S四边形HAGO,根据反比例函数比例系数的几何意义即可求出k2+4k+1=6,再解出k的值即可.【题目详解】如图:∵四边形ABCD、HBEO、OECF、GOFD为矩形,又∵BO为四边形HBEO的对角线,OD为四边形OGDF的对角线,∴S△BEO=S△BHO,S△OFD=S△OGD,S△CBD=S△ADB,∴S△CBD﹣S△BEO﹣S△OFD=S△ADB﹣S△BHO﹣S△OGD,∴S四边形CEOF=S四边形HAGO=2×3=6,∴xy=k2+4k+1=6,解得k=1或k=﹣1.故答案为1或﹣1.【题目点拨】本题考查了反比例函数k的几何意义、矩形的性质、一元二次方程的解法,解题的关键是判断出S四边形CEOF=S四边形HAGO.15、(1,﹣3)【解题分析】
画出平面直角坐标系,然后作出点P绕原点O顺时针旋转180°的点P′的位置,再根据平面直角坐标系写出坐标即可.【题目详解】如图所示:点P(-1,3)绕原点O顺时针旋转180°后的对应点P′的坐标为(1,-3).
故答案是:(1,-3).【题目点拨】考查了坐标与图形变化-旋转,作出图形,利用数形结合的思想求解更简便,形象直观.16、1【解题分析】试题分析:设该商品每件的进价为x元,则150×80%-10-x=x×10%,解得x=1.即该商品每件的进价为1元.故答案为1.点睛:此题主要考查了一元一次方程的应用,解决本题的关键是得到商品售价的等量关系.三、解答题(共8题,共72分)17、(1)16;(2)平均数是3,众数是10,中位数是3;(3)1.【解题分析】
(1)根据有7名留守儿童班级有2个,所占的百分比是2.5%,即可求得班级的总个数,再求出有8名留守儿童班级的个数,进而补全条形统计图;(2)将这组数据按照从小到大排列即可求得统计的这组留守儿童人数数据的平均数、众数和中位数;(3)利用班级数60乘以(2)中求得的平均数即可.【题目详解】解:(1)该校的班级数是:2÷2.5%=16(个).则人数是8名的班级数是:16﹣1﹣2﹣6﹣2=5(个).条形统计图补充如下图所示:故答案为16;(2)每班的留守儿童的平均数是:(1×6+2×7+5×8+6×10+2×2)÷16=3将这组数据按照从小到大排列是:6,7,7,8,8,8,8,8,10,10,10,10,10,10,2,2.故这组数据的众数是10,中位数是(8+10)÷2=3.即统计的这组留守儿童人数数据的平均数是3,众数是10,中位数是3;(3)该镇小学生中,共有留守儿童60×3=1(名).答:该镇小学生中共有留守儿童1名.【题目点拨】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了平均数、中位数和众数以及用样本估计总体.18、证明见解析.【解题分析】
(1)一方面Rt△ABC中,由∠BAC=30°可以得到AB=2BC,另一方面△ABE是等边三角形,EF⊥AB,由此得到AE=2AF,并且AB=2AF,从而可证明△AFE≌△BCA,再根据全等三角形的性质即可证明AC=EF.(2)根据(1)知道EF=AC,而△ACD是等边三角形,所以EF=AC=AD,并且AD⊥AB,而EF⊥AB,由此得到EF∥AD,再根据平行四边形的判定定理即可证明四边形ADFE是平行四边形.【题目详解】证明:(1)∵Rt△ABC中,∠BAC=30°,∴AB=2BC.又∵△ABE是等边三角形,EF⊥AB,∴AB=2AF.∴AF=BC.∵在Rt△AFE和Rt△BCA中,AF=BC,AE=BA,∴△AFE≌△BCA(HL).∴AC=EF.(2)∵△ACD是等边三角形,∴∠DAC=60°,AC=AD.∴∠DAB=∠DAC+∠BAC=90°.∴EF∥AD.∵AC=EF,AC=AD,∴EF=AD.∴四边形ADFE是平行四边形.考点:1.全等三角形的判定与性质;2.等边三角形的性质;3.平行四边形的判定.19、(1)一个水瓶40元,一个水杯是8元;(2)当10<n<25时,选择乙商场购买更合算.当n>25时,选择甲商场购买更合算.【解题分析】
(1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,根据题意列出方程,求出方程的解即可得到结果;(2)计算出两商场得费用,比较即可得到结果.【题目详解】解:(1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,根据题意得:3x+4(48﹣x)=152,解得:x=40,则一个水瓶40元,一个水杯是8元;(2)甲商场所需费用为(40×5+8n)×80%=160+6.4n乙商场所需费用为5×40+(n﹣5×2)×8=120+8n则∵n>10,且n为整数,∴160+6.4n﹣(120+8n)=40﹣1.6n讨论:当10<n<25时,40﹣1.6n>0,160+0.64n>120+8n,∴选择乙商场购买更合算.当n>25时,40﹣1.6n<0,即160+0.64n<120+8n,∴选择甲商场购买更合算.【题目点拨】此题主要考查不等式的应用,解题的关键是根据题意找到等量关系与不等关系进行列式求解.20、(1)证明见解析;(2)能;BE=1或;(3)【解题分析】
(1)证明:∵AB=AC,∴∠B=∠C,∵△ABC≌△DEF,∴∠AEF=∠B,又∵∠AEF+∠CEM=∠AEC=∠B+∠BAE,∴∠CEM=∠BAE,∴△ABE∽△ECM;(2)能.∵∠AEF=∠B=∠C,且∠AME>∠C,∴∠AME>∠AEF,∴AE≠AM;当AE=EM时,则△ABE≌△ECM,∴CE=AB=5,∴BE=BC−EC=6−5=1,当AM=EM时,则∠MAE=∠MEA,∴∠MAE+∠BAE=∠MEA+∠CEM,即∠CAB=∠CEA,又∵∠C=∠C,∴△CAE∽△CBA,∴,∴CE=,∴BE=6−=;∴BE=1或;(3)解:设BE=x,又∵△ABE∽△ECM,∴,即:,∴CM=,∴AM=5−CM,∴当x=3时,AM最短为,又∵当BE=x=3=BC时,∴点E为BC的中点,∴AE⊥BC,∴AE=,此时,EF⊥AC,∴EM=,S△AEM=.21、【解题分析】【分析】列表得出所有等可能结果,然后根据概率公式列式计算即可得解【题目详解】列表如下:A1A2BA1(A1,A1)(A2,A1)(B,A1)A2(A1,A2)(A2,A2)(B,A2)B(A1,B)(A2,B)(B,B)由表可知,共有9种等可能结果,其中抽出的两张卡片上的图案都是“金鱼”的4种结果,所以抽出的两张卡片上的图案都是“金鱼”的概率为.【题目点拨】本题考查了列表法和树状图法,用到的知识点为:概率=所求情况数与总情况数之比.22、(1)证明见解析;(2)25°.【解题分析】试题分析:(1)根据等量代换可求得∠AOD=∠BOC,根据矩形的对边相等,每个角都是直角,可知∠A=∠B=90°,AD=BC,根据三角形全等的判定AAS证得△AOD≌△BOC,从而得证结论.(2)利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠POA的度数,然后利用圆周角定理来求∠ABC的度数.试题解析:(1)∵∠AOC=∠BOD∴∠AOC-∠COD=∠BOD-∠COD即∠AOD=∠BOC∵四边形ABCD是矩形∴∠A=∠B=90°,AD=BC∴∴AO=OB(2)解:∵AB是的直径,PA与相切于点A,∴PA⊥AB,∴∠A=90°.又∵∠OPA=40°,∴∠AOP=50°
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 法律行业客服工作总结专业解决法律问题
- 环保设备行业采购工作总结
- 音乐行业安全生产工作总结
- 分析行业数据解读培训总结
- 咨询行业中战略顾问的工作表现概述
- 【八年级下册历史】第6课 艰难探索与建设成就 同步练习
- 创新实验资源共享合同(2篇)
- 2024社团规章制度(30篇)
- 《政府采购业务知识》课件
- 2024年福建省《辅警招聘考试必刷500题》考试题库带答案(突破训练)
- 2024年湖北省汉江国有资本投资集团有限公司招聘笔试参考题库含答案解析
- 广州市九区联考2023-2024学年高一上学期期末教学质量监测数学试卷(原卷版)
- 西方国家的量刑建议制度及其比较
- 游戏方案模板
- 幼儿园大班数学上学期期末考试-试题测试
- 地震预警安装方案
- 汽车产品定义 培训课件
- NICU患儿常规监测和护理要点
- 高血压急症的紧急处理与护理
- 数字工程勘察信息平台构建
- 喷涂设备保养和维护操作规程
评论
0/150
提交评论