专题05 解析几何(解答题10种考法)讲义(原卷版)_第1页
专题05 解析几何(解答题10种考法)讲义(原卷版)_第2页
专题05 解析几何(解答题10种考法)讲义(原卷版)_第3页
专题05 解析几何(解答题10种考法)讲义(原卷版)_第4页
专题05 解析几何(解答题10种考法)讲义(原卷版)_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题05解析几何(解答题10种考法)考法一定点【例11】(2023·山西运城·山西省运城中学校校考二模)已知点为双曲线上一点,的左焦点到一条渐近线的距离为.(1)求双曲线的标准方程;(2)不过点的直线与双曲线交于两点,若直线PA,PB的斜率和为1,证明:直线过定点,并求该定点的坐标.【例12】(2023·全国·统考高考真题)已知椭圆的离心率是,点在上.(1)求的方程;(2)过点的直线交于两点,直线与轴的交点分别为,证明:线段的中点为定点.【例13】(2023·江西九江·统考一模)已知过点的直线与抛物线交于两点,过线段的中点作直线轴,垂足为,且.(1)求抛物线的方程;(2)若为上异于点的任意一点,且直线与直线交于点,证明:以为直径的圆过定点.【变式】1.(2022·全国·统考高考真题)已知椭圆E的中心为坐标原点,对称轴为x轴、y轴,且过两点.(1)求E的方程;(2)设过点的直线交E于M,N两点,过M且平行于x轴的直线与线段AB交于点T,点H满足.证明:直线HN过定点.2.(2023·福建泉州·统考模拟预测)已知椭圆的离心率是,上、下顶点分别为,.圆与轴正半轴的交点为,且.(1)求的方程;(2)直线与圆相切且与相交于,两点,证明:以为直径的圆恒过定点.3(2023·河南·校联考模拟预测)已知椭圆的焦距为2,圆与椭圆恰有两个公共点.(1)求椭圆的标准方程;(2)已知结论:若点为椭圆上一点,则椭圆在该点处的切线方程为.若椭圆的短轴长小于4,过点作椭圆的两条切线,切点分别为,求证:直线过定点.考法二定值【例2】(2023·四川南充·四川省南充高级中学校考三模)已知椭圆的左、右焦点为,,离心率为.点P是椭圆C上不同于顶点的任意一点,射线、分别与椭圆C交于点A、B,的周长为8.(1)求椭圆C的标准方程;(2)若,,求证:为定值.【变式】1.(2023·河北保定·统考二模)已知椭圆的中心在原点,焦点在轴上,长轴长为短轴长的2倍,若椭圆经过点,(1)求椭圆的方程;(2)若是椭圆上不同于点的两个动点,直线与轴围成底边在轴上的等腰三角形,证明:直线的斜率为定值.2.(2023·四川南充·四川省南充高级中学校考三模)已知椭圆的左、右焦点为,离心率为.点是椭圆上不同于顶点的任意一点,射线分别与椭圆交于点,的周长为8.(1)求椭圆的标准方程;(2)设,,的面积分别为.求证:为定值.3.(2023·湖北武汉·华中师大一附中校考模拟预测)已知抛物线T的顶点在原点,对称轴为坐标轴,且过,,,四点中的两点.(1)求抛物线T的方程:(2)已知圆,过点作圆的两条切线,分别交抛物线T于,和,四个点,试判断是否是定值?若是定值,求出定值,若不是定值,请说明理由.考法三定直线【例3】(2023·全国·统考高考真题)已知双曲线C的中心为坐标原点,左焦点为,离心率为.(1)求C的方程;(2)记C的左、右顶点分别为,,过点的直线与C的左支交于M,N两点,M在第二象限,直线与交于点P.证明:点在定直线上.【变式】1.(2023·湖南永州·统考一模)已知点A为圆上任意一点,点的坐标为,线段的垂直平分线与直线交于点.(1)求点的轨迹的方程;(2)设轨迹E与轴分别交于两点(在的左侧),过的直线与轨迹交于两点,直线与直线的交于,证明:在定直线上.2.(2023·江苏常州·校考一模)已知椭圆:的短轴长为,离心率为.(1)求椭圆的方程;(2)过点的动直线与椭圆相交于不同的两点,在线段上取点,满足,证明:点总在某定直线上.考法四最值【例4】(2023·全国·统考高考真题)已知直线与抛物线交于两点,且.(1)求;(2)设F为C的焦点,M,N为C上两点,,求面积的最小值.【变式】1.(2023·浙江·模拟预测)我国著名数学家华罗庚曾说:“数缺形时少直观,形少数时难入微,数形结合百般好,隔离分家万事休.”事实上,很多代数问题可以转化为几何问题加以解决,已知曲线C上任意一点满足.(1)化简曲线的方程;(2)已知圆(为坐标原点),直线经过点且与圆相切,过点A作直线的垂线,交于两点,求面积的最小值.2.(2023·浙江·模拟预测)已知椭圆,点,斜率不为0的直线与椭圆交于点,与圆相切且切点为为中点.(1)求圆的半径的取值范围;(2)求的取值范围.3.(2023·河北秦皇岛·校联考二模)已知双曲线实轴的一个端点是,虚轴的一个端点是,直线与双曲线的一条渐近线的交点为.(1)求双曲线的方程;(2)若直线与曲线有两个不同的交点是坐标原点,求的面积最小值.考法五轨迹问题【例5】(2023·湖南·校联考二模)已知为双曲线的左右焦点,且该双曲线离心率小于等于,点和是双曲线上关于轴对称非重合的两个动点,为双曲线左右顶点,恒成立.(1)求该双曲线的标准方程;(2)设直线和的交点为,求点的轨迹方程.【变式】1(2023·湖北武汉·华中师大一附中校考模拟预测)已知过右焦点的直线交双曲线于两点,曲线的左右顶点分别为,虚轴长与实轴长的比值为.(1)求曲线的方程;(2)如图,点关于原点的对称点为点,直线与直线交于点,直线与直线交于点,求的轨迹方程.2.(2023·江西·校联考二模)已知过曲线上一点作椭圆的切线,则切线的方程为.若为椭圆上的动点,过作的切线交圆于,过分别作的切线,直线交于点.(1)求动点的轨迹的方程;(2)已知为定直线上一动点,过的动直线与轨迹交于两个不同点,在线段上取一点,满足,试证明动点的轨迹过定点.3.(2023·湖南长沙·雅礼中学校考一模)已知椭圆C:,直线l与椭圆C交于A,B两点.(1)点为椭圆C上的动点(与点A,B不重合),若直线PA,直线PB的斜率存在且斜率之积为,试探究直线l是否过定点,并说明理由;(2)若.过点O作,垂足为点Q,求点Q的轨迹方程.考法六长度比值【例6】(2023·上海杨浦·复旦附中校考模拟预测)贝塞尔曲线是计算机图形学和相关领域中重要的参数曲线.法国数学象卡斯特利奥对贝塞尔曲线进行了图形化应用的测试,提出了DeCasteljau算法:已知三个定点,根据对应的比例,使用递推画法,可以画出地物线.反之,已知抛物线上三点的切线,也有相应成比例的结论.如图所示,抛物线,其中为一给定的实数.(1)写出抛物线的焦点坐标及准线方程;(2)若直线与抛物线只有一个公共点,求实数k的值;(3)如图,A,B,C是H上不同的三点,过三点的三条切线分别两两交于点D,E,F,证明:.【变式】1.(2023·云南·校联考三模)如图,已知椭圆的上、下顶点为,右顶点为,离心率为,直线和相交于点,过作直线交轴的正半轴于点,交椭圆于点,连接交于点.(1)求的方程;(2)求证:.2.(2023·河南·校联考模拟预测)已知双曲线的左、右焦点分别为,.过的直线l交C的右支于M,N两点,当l垂直于x轴时,M,N到C的一条渐近线的距离之和为.(1)求C的方程;(2)证明:为定值.考法七存在性【例7】(2023·陕西西安·陕西师大附中校考模拟预测)已知椭圆经过点,过点的直线交该椭圆于,两点.(1)求面积的最大值,并求此时直线的方程;(2)若直线与轴不垂直,在轴上是否存在点使得恒成立?若存在,求出的值;若不存在,说明理由.【变式】1.(2023·吉林长春·东北师大附中校考一模)椭圆的离心率为,过椭圆焦点并且垂直于长轴的弦长度为1.(1)求椭圆的标准方程;(2)若直线与椭圆相交于,两点,与轴相交于点,若存在实数,使得,求的取值范围.2.(2023·辽宁抚顺·校考模拟预测)已知动点到定点的距离与动点到定直线的距离之比为.(1)求点的轨迹的方程;(2)对,曲线上是否始终存在两点,关于直线对称?若存在,求实数的取值范围;若不存在,请说明理由.3.(2023·四川成都·模拟预测)已知椭圆的中心为O,左、右焦点分别为,,M为椭圆C上一点,线段与圆相切于该线段的中点N,且的面积为4.(1)求椭圆C的方程;(2)椭圆C上是否存在三个点A,B,P,使得直线AB过椭圆C的左焦点,且四边形是平行四边形?若存在,求出直线AB的方程;若不存在.请说明理由.考法八角度关系转斜率【例8】(2022·全国·统考高考真题)已知点在双曲线上,直线l交C于P,Q两点,直线的斜率之和为0.(1)求l的斜率;(2)若,求的面积.【变式】1.(2023·陕西宝鸡·校考模拟预测)已知点P是平面直角坐标系异于O的任意一点过点P作直线及的平行线,分别交x轴于M,N两点,且.(1)求点P的轨迹C的方程;(2)在x轴正半轴上取两点,且,过点A作直线l与轨迹C交于E,F两点,证明:.2.(2023·贵州毕节·校考模拟预测)已知椭圆的三个顶点所确定的三角形的面积为,(是的离心率)是上一点.(1)求的方程;(2)若直线与交于两点,设,直线与分别交于(不同于)两点,当时,记直线的倾斜角分别为,,求的最大值.考点九三点共线【例9】(2023·贵州毕节·校考模拟预测)已知是抛物线的焦点,过点的直线交抛物线于两点,当平行于轴时,.(1)求抛物线的方程;(2)若为坐标原点,过点作轴的垂线交直线于点,过点作直线的垂线与抛物线的另一交点为的中点为,证明:三点共线.【变式】1.(2022秋·云南昆明)过抛物线:上一动点作x轴的垂线,记垂足为,设线段的中点为,动点的轨迹为曲线,设为坐标原点(1)求曲线的方程;(2)过抛物线的焦点作直线与曲线交于两点,设抛物线的准线为,过点作直线的垂线,记垂足为,证明:、、三点共线,2.(2023·江苏镇江)已知过抛物线的焦点,斜率为的直线交抛物线于两点、,其中,且.(1)求该抛物线的方程;(2)设O为坐标原点,过点A作抛物线的准线的垂线,垂足为C,证明:B、O、C三点共线.3.(2023·江苏南京)在平面直角坐标系中,已知抛物线:的准线方程为:.(1)求抛物线的方程;(2)过抛物线的焦点作直线与抛物线相交于,两点,过点作直线的垂线,交于点,求证:,,三点共线.考法十三角形类型的转化【例10】(2022·黑龙江佳木斯·佳木斯一中校考三模)已知椭圆,左焦点为,上顶点为,直线BF与椭圆交于另一点Q,且,且点在椭圆上.(1)求椭圆C的方程;(2)设,,M是椭圆C上一点,且不与顶点重合,若直线与直线交于点P,直线与直线交于点.证明

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论