湖北省恩施州宣恩县2024届中考数学模拟预测题含解析_第1页
湖北省恩施州宣恩县2024届中考数学模拟预测题含解析_第2页
湖北省恩施州宣恩县2024届中考数学模拟预测题含解析_第3页
湖北省恩施州宣恩县2024届中考数学模拟预测题含解析_第4页
湖北省恩施州宣恩县2024届中考数学模拟预测题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省恩施州宣恩县2024学年中考数学模拟预测题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1.一、单选题在反比例函数的图象中,阴影部分的面积不等于4的是()A. B. C. D.2.下列运算结果正确的是()A.a3+a4=a7 B.a4÷a3=a C.a3•a2=2a3 D.(a3)3=a63.下列运算正确的是()A.2a+3a=5a2B.(a3)3=a9C.a2•a4=a8D.a6÷a3=a24.下列计算正确的是(

).A.(x+y)2=x2+y2 B.(-xy2)3=-x3y6C.x6÷x3=x2 D.=25.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A. B. C. D.6.如图,AB切⊙O于点B,OA=2,AB=3,弦BC∥OA,则劣弧BC的弧长为()A. B. C.π D.7.如图是由长方体和圆柱组成的几何体,它的俯视图是()A. B. C. D.8.如图,在矩形ABCD中,AB=,AD=2,以点A为圆心,AD的长为半径的圆交BC边于点E,则图中阴影部分的面积为()A. B. C. D.9.二次函数的图象如图所示,则反比例函数与一次函数在同一坐标系中的大致图象是()A. B. C. D.10.如图,正方形ABCD的边长是3,BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②OA2=OE•OP;③S△AOD=S四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是(

)A.1 B.2 C.3 D.4二、填空题(本大题共6个小题,每小题3分,共18分)11.设、是一元二次方程的两实数根,则的值为.12.有4根细木棒,长度分别为2cm、3cm、4cm、5cm,从中任选3根,恰好能搭成一个三角形的概率是__________.13.已知关于x的方程x214.如图,若点的坐标为,则=________.15.将数轴按如图所示从某一点开始折出一个等边三角形ABC,设点A表示的数为x﹣3,点B表示的数为2x+1,点C表示的数为﹣4,若将△ABC向右滚动,则x的值等于_____,数字2012对应的点将与△ABC的顶点_____重合.16.如图,在等腰中,,点在以斜边为直径的半圆上,为的中点.当点沿半圆从点运动至点时,点运动的路径长是________.三、解答题(共8题,共72分)17.(8分)如图,矩形ABCD中,AB=4,BC=6,E是BC边的中点,点P在线段AD上,过P作PF⊥AE于F,设PA=x.(1)求证:△PFA∽△ABE;(2)当点P在线段AD上运动时,设PA=x,是否存在实数x,使得以点P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,请说明理由;(3)探究:当以D为圆心,DP为半径的⊙D与线段AE只有一个公共点时,请直接写出x满足的条件:.18.(8分)为了计算湖中小岛上凉亭P到岸边公路l的距离,某数学兴趣小组在公路l上的点A处,测得凉亭P在北偏东60°的方向上;从A处向正东方向行走200米,到达公路l上的点B处,再次测得凉亭P在北偏东45°的方向上,如图所示.求凉亭P到公路l的距离.(结果保留整数,参考数据:≈1.414,≈1.732)19.(8分)从甲地到乙地有两条公路,一条是全长600km的普通公路,另一条是全长480km的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.20.(8分)某中学为了解学生平均每天“诵读经典”的时间,在全校范围内随机抽查了部分学生进行调查统计(设每天的诵读时间为分钟),将调查统计的结果分为四个等级:Ⅰ级、Ⅱ级、Ⅲ级、Ⅳ级.将收集的数据绘制成如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:()请补全上面的条形图.()所抽查学生“诵读经典”时间的中位数落在__________级.()如果该校共有名学生,请你估计该校平均每天“诵读经典”的时间不低于分钟的学生约有多少人?21.(8分)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,2)画出△ABC关于点B成中心对称的图形△A1BC1;以原点O为位似中心,位似比为1:2,在y轴的左侧画出△ABC放大后的图形△A2B2C2,并直接写出C2的坐标.22.(10分)有一个二次函数满足以下条件:①函数图象与x轴的交点坐标分别为A(1,0),B(x1,y1)(点B在点A的右侧);②对称轴是x=3;③该函数有最小值是﹣1.(1)请根据以上信息求出二次函数表达式;(1)将该函数图象x>x1的部分图象向下翻折与原图象未翻折的部分组成图象“G”,平行于x轴的直线与图象“G”相交于点C(x3,y3)、D(x4,y4)、E(x5,y5)(x3<x4<x5),结合画出的函数图象求x3+x4+x5的取值范围.23.(12分)如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,4),与x轴交于点A和点B,其中点A的坐标为(﹣2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E.(1)求抛物线的解析式;(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC的面积最大,若存在,求出点F的坐标和最大值;若不存在,请说明理由;(3)平行于DE的一条动直线l与直线BC相较于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求P点的坐标.24.如图,反比例函数y=(x>0)的图象与一次函数y=2x的图象相交于点A,其横坐标为1.(1)求k的值;(1)点B为此反比例函数图象上一点,其纵坐标为2.过点B作CB∥OA,交x轴于点C,求点C的坐标.

参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解题分析】

根据反比例函数中k的几何意义,过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|解答即可.【题目详解】解:A、图形面积为|k|=1;B、阴影是梯形,面积为6;C、D面积均为两个三角形面积之和,为2×(|k|)=1.故选B.【题目点拨】主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.2、B【解题分析】

分别根据同底数幂的乘法及除法法则、幂的乘方与积的乘方法则及合并同类项的法则对各选项进行逐一分析即可.【题目详解】A.a3+a4≠a7,不是同类项,不能合并,本选项错误;B.a4÷a3=a4-3=a;,本选项正确;C.a3•a2=a5;,本选项错误;D.(a3)3=a9,本选项错误.故选B【题目点拨】本题考查的是同底数幂的乘法及除法法则、幂的乘方与积的乘方法则及合并同类项的法则等知识,比较简单.3、B【解题分析】

直接利用同底数幂的乘除运算法则以及幂的乘方运算法则、合并同类项法则分别化简得出答案.【题目详解】A、2a+3a=5a,故此选项错误;B、(a3)3=a9,故此选项正确;C、a2•a4=a6,故此选项错误;D、a6÷a3=a3,故此选项错误.故选:B.【题目点拨】此题主要考查了同底数幂的乘除运算以及合并同类项和幂的乘方运算,正确掌握运算法则是解题关键.4、D【解题分析】分析:根据完全平方公式、积的乘方法则、同底数幂的除法法则和算术平方根的定义计算,判断即可.详解:(x+y)2=x2+2xy+y2,A错误;(-xy2)3=-x3y6,B错误;x6÷x3=x3,C错误;==2,D正确;故选D.点睛:本题考查的是完全平方公式、积的乘方、同底数幂的除法以及算术平方根的计算,掌握完全平方公式、积的乘方法则、同底数幂的除法法则和算术平方根的定义是解题的关键.5、B【解题分析】

连接BF,由折叠可知AE垂直平分BF,根据勾股定理求得AE=5,利用直角三角形面积的两种表示法求得BH=,即可得BF=,再证明∠BFC=90°,最后利用勾股定理求得CF=.【题目详解】连接BF,由折叠可知AE垂直平分BF,∵BC=6,点E为BC的中点,∴BE=3,又∵AB=4,∴AE==5,∵,∴,∴BH=,则BF=,∵FE=BE=EC,∴∠BFC=90°,∴CF==.故选B.【题目点拨】本题考查的是翻折变换的性质、矩形的性质及勾股定理的应用,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.6、A【解题分析】试题分析:连接OB,OC,∵AB为圆O的切线,∴∠ABO=90°,在Rt△ABO中,OA=,∠A=30°,∴OB=,∠AOB=60°,∵BC∥OA,∴∠OBC=∠AOB=60°,又OB=OC,∴△BOC为等边三角形,∴∠BOC=60°,则劣弧长为.故选A.考点:1.切线的性质;2.含30度角的直角三角形;3.弧长的计算.7、A【解题分析】分析:根据从上边看得到的图形是俯视图,可得答案.详解:从上边看外面是正方形,里面是没有圆心的圆,故选A.点睛:本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.8、B【解题分析】

先利用三角函数求出∠BAE=45°,则BE=AB=,∠DAE=45°,然后根据扇形面积公式,利用图中阴影部分的面积=S矩形ABCD﹣S△ABE﹣S扇形EAD进行计算即可.【题目详解】解:∵AE=AD=2,而AB=,∴cos∠BAE==,∴∠BAE=45°,∴BE=AB=,∠BEA=45°.∵AD∥BC,∴∠DAE=∠BEA=45°,∴图中阴影部分的面积=S矩形ABCD﹣S△ABE﹣S扇形EAD=2×﹣××﹣=2﹣1﹣.故选B.【题目点拨】本题考查了扇形面积的计算.阴影面积常用的方法:直接用公式法;和差法;割补法.求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.9、D【解题分析】

根据抛物线和直线的关系分析.【题目详解】由抛物线图像可知,所以反比例函数应在二、四象限,一次函数过原点,应在二、四象限.故选D【题目点拨】考核知识点:反比例函数图象.10、C【解题分析】∵四边形ABCD是正方形,∴AD=BC,∠DAB=∠ABC=90°,∵BP=CQ,∴AP=BQ,在△DAP与△ABQ中,,∴△DAP≌△ABQ,∴∠P=∠Q,∵∠Q+∠QAB=90°,∴∠P+∠QAB=90°,∴∠AOP=90°,∴AQ⊥DP;故①正确;∵∠DOA=∠AOP=90°,∠ADO+∠P=∠ADO+∠DAO=90°,∴∠DAO=∠P,∴△DAO∽△APO,∴,∴AO2=OD•OP,∵AE>AB,∴AE>AD,∴OD≠OE,∴OA2≠OE•OP;故②错误;在△CQF与△BPE中,∴△CQF≌△BPE,∴CF=BE,∴DF=CE,在△ADF与△DCE中,,∴△ADF≌△DCE,∴S△ADF﹣S△DFO=S△DCE﹣S△DOF,即S△AOD=S四边形OECF;故③正确;∵BP=1,AB=3,∴AP=4,∵△AOP∽△DAP,∴,∴BE=,∴QE=,∵△QOE∽△PAD,∴,∴QO=,OE=,∴AO=5﹣QO=,∴tan∠OAE==,故④正确,故选C.点睛:本题考查了相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,三角函数的定义,熟练掌握全等三角形的判定和性质是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、27【解题分析】试题分析:根据一元二次方程根与系数的关系,可知+=5,·=-1,因此可知=-2=25+2=27.故答案为27.点睛:此题主要考查了一元二次方程根与系数的关系,解题时灵活运用根与系数的关系:,,确定系数a,b,c的值代入求解,然后再通过完全平方式变形解答即可.12、【解题分析】

根据题意,使用列举法可得从有4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目,根据概率的计算方法,计算可得答案.【题目详解】根据题意,从有4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,而能搭成一个三角形的有2、3、4;3、4、5,2、4、5,三种,得P=.故其概率为:.【题目点拨】本题考查概率的计算方法,使用列举法解题时,注意按一定顺序,做到不重不漏.用到的知识点为:概率=所求情况数与总情况数之比.13、m<9【解题分析】试题分析:若一元二次方程有两个不相等的实数根,则根的判别式△=b2﹣4ac>0,建立关于m的不等式,解不等式即可求出m的取值范围.∵关于x的方程x2﹣6x+m=0有两个不相等的实数根,∴△=b2﹣4ac=(﹣6)2﹣4m=36﹣4m>0,解得:m<1.考点:根的判别式.14、【解题分析】

根据勾股定理,可得OA的长,根据正弦是对边比斜边,可得答案.【题目详解】如图,由勾股定理,得:OA==1.sin∠1=,故答案为.15、﹣1C.【解题分析】∵将数轴按如图所示从某一点开始折出一个等边三角形ABC,设点A表示的数为x﹣1,点B表示的数为2x+1,点C表示的数为﹣4,∴﹣4﹣(2x+1)=2x+1﹣(x﹣1);∴﹣1x=9,x=﹣1.故A表示的数为:x﹣1=﹣1﹣1=﹣6,点B表示的数为:2x+1=2×(﹣1)+1=﹣5,即等边三角形ABC边长为1,数字2012对应的点与﹣4的距离为:2012+4=2016,∵2016÷1=672,C从出发到2012点滚动672周,∴数字2012对应的点将与△ABC的顶点C重合.故答案为﹣1,C.点睛:此题主要考查了等边三角形的性质,实数与数轴,一元一次方程等知识,本题将数与式的考查有机地融入“图形与几何”中,渗透“数形结合思想”、“方程思想”等,也是一道较优秀的操作活动型问题.16、π【解题分析】

取的中点,取的中点,连接,,,则,故的轨迹为以为圆心,为半径的半圆弧,根据弧长公式即可得轨迹长.【题目详解】解:如图,取的中点,取的中点,连接,,,∵在等腰中,,点在以斜边为直径的半圆上,∴,∵为的中位线,∴,∴当点沿半圆从点运动至点时,点的轨迹为以为圆心,为半径的半圆弧,∴弧长,故答案为:.【题目点拨】本题考查了点的轨迹与等腰三角形的性质.解决动点问题的关键是在运动中,把握不变的等量关系(或函数关系),通过固定的等量关系(或函数关系),解决动点的轨迹或坐标问题.三、解答题(共8题,共72分)17、(1)证明见解析;(2)3或.(3)或0<【解题分析】

(1)根据矩形的性质,结合已知条件可以证明两个角对应相等,从而证明三角形相似;

(2)由于对应关系不确定,所以应针对不同的对应关系分情况考虑:当时,则得到四边形为矩形,从而求得的值;当时,再结合(1)中的结论,得到等腰.再根据等腰三角形的三线合一得到是的中点,运用勾股定理和相似三角形的性质进行求解.

(3)此题首先应针对点的位置分为两种大情况:①与AE相切,②与线段只有一个公共点,不一定必须相切,只要保证和线段只有一个公共点即可.故求得相切时的情况和相交,但其中一个交点在线段外的情况即是的取值范围.【题目详解】(1)证明:∵矩形ABCD,∴AD∥BC.∴∠PAF=∠AEB.又∵PF⊥AE,∴△PFA∽△ABE.(2)情况1,当△EFP∽△ABE,且∠PEF=∠EAB时,则有PE∥AB∴四边形ABEP为矩形,∴PA=EB=3,即x=3.情况2,当△PFE∽△ABE,且∠PEF=∠AEB时,∵∠PAF=∠AEB,∴∠PEF=∠PAF.∴PE=PA.∵PF⊥AE,∴点F为AE的中点,即∴满足条件的x的值为3或(3)或【题目点拨】两组角对应相等,两三角形相似.18、凉亭P到公路l的距离为273.2m.【解题分析】

分析:作PD⊥AB于D,构造出Rt△APD与Rt△BPD,根据AB的长度.利用特殊角的三角函数值求解.【题目详解】详解:作PD⊥AB于D.设BD=x,则AD=x+1.∵∠EAP=60°,∴∠PAB=90°﹣60°=30°.在Rt△BPD中,∵∠FBP=45°,∴∠PBD=∠BPD=45°,∴PD=DB=x.在Rt△APD中,∵∠PAB=30°,∴PD=tan30°•AD,即DB=PD=tan30°•AD=x=(1+x),解得:x≈273.2,∴PD=273.2.答:凉亭P到公路l的距离为273.2m.【题目点拨】此题考查的是直角三角形的性质,解答此题的关键是构造出两个特殊角度的直角三角形,再利用特殊角的三角函数值解答.19、4小时.【解题分析】

本题依据题意先得出等量关系即客车由高速公路从A地道B的速度=客车由普通公路的速度+45,列出方程,解出检验并作答.【题目详解】解:设客车由高速公路从甲地到乙地需x小时,则走普通公路需2x小时,根据题意得:解得x=4经检验,x=4原方程的根,答:客车由高速公路从甲地到乙地需4时.【题目点拨】本题主要考查分式方程的应用,找到关键描述语,找到合适的等量关系是解决问题的关键.根据速度=路程÷时间列出相关的等式,解答即可.20、)补全的条形图见解析()Ⅱ级.().【解题分析】试题分析:(1)根据Ⅱ级的人数和所占的百分比即可求出总数,从而求出三级人数,进而补全图形;(2)把所有同类数据按照从小到大的顺序排列,中间的数据是中位数,则该数在Ⅱ级.;(3)由样本估计总体,由于时间不低于的人数占,故该类学生约有408人.试题解析:(1)本次随机抽查的人数为:20÷40%=50(人).三级人数为:50-13-20-7=10.补图如下:(2)把所有同类数据按照从小到大的顺序排列,中间的数据是中位数,则该数在Ⅱ级.(3)由样本估计总体,由于时间不低于的人数占,所以该类学生约有.21、(1)画图见解析;(2)画图见解析,C2的坐标为(﹣6,4).【解题分析】试题分析:利用关于点对称的性质得出的坐标进而得出答案;

利用关于原点位似图形的性质得出对应点位置进而得出答案.试题解析:(1)△A1BC1如图所示.(2)△A2B2C2如图所示,点C2的坐标为(-6,4).22、(1)y=(x﹣3)1﹣1;(1)11<x3+x4+x5<9+1.【解题分析】

(1)利用二次函数解析式的顶点式求得结果即可;(1)由已知条件可知直线与图象“G”要有3个交点.分类讨论:分别求得平行于x轴的直线与图象“G”有1个交点、1个交点时x3+x4+x5的取值范围,易得直线与图象“G”要有3个交点时x3+x4+x5的取值范围.【题目详解】(1)有上述信息可知该函数图象的顶点坐标为:(3,﹣1)设二次函数表达式为:y=a(x﹣3)1﹣1.∵该图象过A(1,0)∴0=a(1﹣3)1﹣1,解得a=.∴表达式为y=(x﹣3)1﹣1(1)如图所示:由已知条件可知直线与图形“G”要有三个交点1当直线与x轴重合时,有1个交点,由二次函数的轴对称性可求x3+x4=6,∴x3+x4+x5>11,当直线过y=(x﹣3)1﹣1的图象顶点时,有1个交点,由翻折可以得到翻折后的函数图象为y=﹣(x﹣3)1+1,∴令(x﹣3)1+1=﹣1时,解得x=3+1或x=3﹣1(舍去)∴x3+x4+x5<9+1.综上所述11<x3+x4+x5<9+1.【题目点拨】考查了二次函数综合题,涉及到待定系数法求二次函数解析式,抛物线的对称性质,二次函数图

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论