材料的电导性能课件_第1页
材料的电导性能课件_第2页
材料的电导性能课件_第3页
材料的电导性能课件_第4页
材料的电导性能课件_第5页
已阅读5页,还剩74页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

4材料的电导性能材料的电导性能4.1电导的物理现象材料的电导性能电学知识的基本概念复习在一个R=5Ω的电阻两端加电压V=20V,求:

(1)通过电阻的电流;若电阻的截面积S=2cm2,长度L=10cm,求该电阻材料的电阻率ρ

和电导率;求电场强度E;求通过电阻的电流密度J;(5)将欧姆定律中的电流、电压、电阻分别表示成电流密度、电场强度和电阻率的形式。解:

(1)(2)

(3)

(4)

材料的电导性能(5)欧姆定律的微分形式。代入欧姆定律公式有此即欧姆定律的微分形式AreaLengthi材料的电导性能微分式说明导体中某点的电流密度(单位时间内通过单位面积的电荷)正比于该点的电场强度,比例系数为电导率σ。

电导率即单位电场强度下,单位时间内通过单位面积的电荷。电场强度E-伏特/厘米;电流密度J-安培/厘米2;电阻率ρ-欧姆.厘米;电导率σ-西门子.厘米-1材料的电导性能电阻率(电导率)是材料的固有性能导体、半导体和绝缘体注意:不同的手册,划分范围不尽相同。材料的电导性能电流是电荷在空间的定向运动。任何一种物质,只要存在带电荷的自由粒子——载流子,就可以在电场下产生导电电流。金属中:自由电子无机材料中:电子(负电子/空穴)——电子电导离子(正、负离子/空穴)——离子电导4.1.2

电导的物理特性(1)载流子材料的电导性能(2)迁移率和电导率的一般表达式物体的导电现象,其微观本质是载流子在电场作用下的定向迁移。材料的电导性能题:一电子电导材料载流子是电子,载流子密度即单位体积的电子数为n=1.0×1018cm-3,在两端加一E=10v.cm-1的电场强度,若电子的运动速度为n=1.0×104cm.s-1,求:单位时间内通过单位横截面积的电荷数J;已知电子的运动速度和电场强度成正比,定义载流子的迁移率m为单位电场下,载流子的运动速度,求迁移率m

;单位电场下,单位时间内通过单位横截面积的电荷数,即电导率s

;根据载流子密度和载流子迁移率,求电导率。解:(1)J=nqn

=1.0×1018cm-3×1.6×10-19C×1.0×104cm.s-1

=1.6×103C.cm-2.s-1=1.6×103A.cm-2(2)m=n/E=1.0×104cm.s-1/(10v.cm-1)=1.0×103cm-2.v-1.s-1

(3)s=J/E=1.6×103A.cm-2/(10v.cm-1)=160A.v-1.cm-1

=160S.cm-1

(4)

s=J/E=nqn/E=nqm

=1.0×1018cm-3×1.6×10-19C×1.0×103cm-2.v-1.s-1

=160A.v-1.cm-1=160S.cm-1材料的电导性能(2)迁移率和电导率的关系

s=J/E

=J/E

=nqn/E=nqm

电导率的一般表达式

s=∑niqimi材料的电导性能电子电导的特征是具有霍尔效应。沿试样x轴方向通入电流I(电流密度Jx),z轴方向上加一磁场Hz,那么在y轴方向上将产生一电场Ey,这种现象称霍尔效应。

①霍尔效应(复习左手定则和右手定则)图4-1霍尔效应示意图材料的电导性能Ey产生的电场强度,霍尔系数(又称霍尔常数)RH

霍尔效应的起源:源于磁场中运动电荷所产生的洛仑兹力,导致载流子在磁场中产生洛仑兹偏转。该力所作用的方向既与电荷运动的方向垂直,也与磁场方向垂直。材料的电导性能

霍尔系数RH=μ.ρ,即霍尔常数等于材料的电阻率ρ与电子迁移率μ的乘积。霍尔系数RH有如下表达式:对于半导体材料:n型:p型:材料的电导性能离子电导的特征是具有电解效应。利用电解效应可以检验材料是否存在离子导电可以判定载流子是正离子还是负离子②电解效应法拉第电解定律:电解物质与通过的电量成正比关系:材料的电导性能4.2离子电导

参与电导的载流子为离子,有离子或空位。它又可分为两类。本征电导:源于晶体点阵的基本离子的运动。离子自身随着热振动离开晶格形成热缺陷。从而导致载流子,即离子、空位等的产生,这尤其是在高温下十分显著。杂质电导:由固定较弱的离子(杂质)的运动造成,由于杂质离子是弱联系离子,故在较低温度下其电导也表现得很显著。材料的电导性能固有电导(本征电导)中,载流子由晶体本身的热缺陷提供。4.2.1载流子浓度(1)本征电导的载流子浓度N1为单位体积内离子结点数或单位体积内离子对的数目。材料的电导性能低温下:kT<E,故N较低。只有在高温下,热缺陷的浓度才明显增大,因此,

本征电导在高温下才会显著地增大。材料的电导性能(2)杂质电导的载流子浓度杂质电导(extrinsicconduction)的载流子浓度决定于杂质的数量和种类。由于杂质的存在,不仅增加了载流子数,而且使点阵发生畸变,使得离子离解能变小。在低温下,离子晶体的电导主要是杂质电导。很显然,杂质含量相同时,杂质不同产生的载流子浓度不同;而同样的杂质,含量不同,产生的载流子浓度不同。材料的电导性能4.2.2离子迁移率离子电导的微观机构为载流子─离子的扩散。间隙离子处于间隙位置时,受周边离子的作用,处于一定的平衡位置(半稳定位置)。如要从一个间隙位置跃入相邻间隙位置,需克服高度为U0的势垒完成一次跃迁,又处于新的平衡位置上。这种扩散过程就构成了宏观的离子“迁移”。

由于U0相当大,远大于一般的电场能,即在一般的电场强度下,间隙离子单从电场中获得的能量不足以克服势垒进行跃迁,因而热运动能是间隙离子迁移所需能量的主要来源。材料的电导性能材料的电导性能加上电场后,由于电场力的作用,使得晶体中间隙离子的势垒不再对称。正离子顺电场方向,“迁移”容易,反电场方向“迁移”困难。材料的电导性能4.2.3离子电导率(1)离子电导率的一般表达方式σ=nqμ如果本征电导主要由肖特基缺陷引起,其本征电导率为:Ws-可认为是电导的活化能,它包括缺陷形成能和迁移能。电导率与之具有指数函数的关系。本征离子电导率一般表达式为:材料的电导性能若有杂质也可依照上式写出:一般A2<<A1,但B2<B1,故有exp(-B2)>>exp(-B1)这说明杂质电导率要比本征电导率大得多。材料的电导性能4.2.4影响离子电导率的因素(1)温度呈指数关系,随温度升高,电导率迅速增大。如图:注意:低温下,杂质电导占主要地位(曲线1),高温下,本征电导起主要作用(曲线2)。材料的电导性能(2)离子性质及晶体结构关键点:电导率随着电导活化能指数规律变化,而活化能大小反映离子的固定程度,它与晶体结构有关。熔点高的晶体,活化能高,电导率低。a)离子半径:一般负离子半径小,结合力大,因而活化能也大;b)阳离子电荷,电价高,结合力大,因而活化能也大;c)堆积程度,结合愈紧密,可供移动的离子数目就少,且移动也要困难些,可导致较低的电导率。材料的电导性能材料的电导性能(3)晶体缺陷离子晶格缺陷浓度大并参与电导。故离子性晶格缺陷的生成及其浓度大小是决定离子电导的关键所在。材料的电导性能4.5固体材料的电导4.5.1玻璃态电导(1)含碱玻璃的电导特性在含有碱金属离子的玻璃中,基本上表现为离子电导。玻璃体的结构比晶体疏松,碱金属离子能够穿过大于其原子大小的距离而迁移,同时克服一些位垒。玻璃体与晶体不同是,碱金属离子的能阱不是单一的数值,而是有高有低,这些位垒的体积平均值就是载流子的活化能。

大多数固体材料为多晶多相材料,其显微结构往往较为复杂,由晶粒、玻璃相、气孔等组成。多晶多相材料的电导比起单晶和均质材料要复杂得多。材料的电导性能材料的电导性能(a)碱金属含量不大时,σ与碱金属含量呈直线关系,碱金属只增加离子数目;但碱金属含量超过一定限度时,σ与碱金属含量呈指数关系,这是因为碱金属含量的增加破坏了玻璃的网络,而使玻璃结构更加松散,因而活化能降低,导电率指数式上升。材料的电导性能(b)双碱效应应用条件:当碱金属离子总浓度较大时(占玻璃25-30%),在碱金属离子总浓度相同情况下,含两种碱比含一种碱的电导率要小,比例恰当时,可降到最低(降低4~5个数量级)。材料的电导性能(3)压碱效应

含碱玻璃中加入二价金属氧化物,尤其是重金属氧化物,可使玻璃电导率降低,这是因为二价离子与玻璃体中氧离子结合比较牢固,能嵌入玻璃网络结构,以致堵住了离子的迁移通道,使碱金属离子移动困难,从而减小了玻璃的电导率。也可这样理解,二价金属离子的加入,加强玻璃的网络形成,从而降低了碱金属离子的迁移能力。材料的电导性能材料的电导性能半导体玻璃作为新型材料非常引人注目:(1)金属氧化物玻璃(SiO2等);(2)硫属化物玻璃(S,Se,Te等与金属的化合物);(3)Ge,Si,Se等元素非晶态半导体。(2)玻璃半导体材料的电导性能4.3电子电导(半导体)

导电的前提:在外界能量(如热、辐射)、价带中的电子获得能量跃迁到导带中去;导电机制:电子与空穴。材料的电导性能4.3.2载流子浓度(1)晶体的能带结构材料的电导性能材料的电导性能(2)本征半导体中的载流子浓度本征电导:载流子由半导体晶格本身提供,是由热激发产生的,其浓度与温度呈指数关系。导带中的电子导电和价带中的空穴导电同时存在,载流子电子和空穴的浓度是相等的。材料的电导性能本征半导体的导电机理+4+4+4+4在其它力的作用下,空穴吸引附近的电子来填补,这样的结果相当于空穴的迁移,而空穴的迁移相当于正电荷的移动,因此可以认为空穴是载流子。本征半导体中存在数量相等的两种载流子,即自由电子和空穴。材料的电导性能材料的电导性能(3)杂质半导体中的载流子浓度杂质对半导体的导电性能影响很大,例如,单晶硅中掺(1/10万)硼,导电能力将增大1000倍。杂质半导体可分为n型(可提供电子)和p型(会吸收电子,造成空穴)。施主能级在四价的Si单晶中掺入五价的杂质砷,一个砷原子外层有五个电子,取代一个硅原子后,其中四个同相邻的四个硅原子形成共价键,还多出一个电子,它离导带很近,只差E1=0.05eV,为硅禁带宽度的5%,很容易激发到导带中去。这种“多余”电子的杂质能级称为施主能级,n型半导体。材料的电导性能多余电子磷原子N型半导体中的载流子是什么?1、由施主原子提供的电子,浓度与施主原子相同。2、本征半导体中成对产生的电子和空穴。掺杂浓度远大于本征半导体中载流子浓度,所以,自由电子浓度远大于空穴浓度。自由电子称为多数载流子(多子),空穴称为少数载流子(少子)。+4+4+5+4材料的电导性能受主能级若在Si中掺入第三族元素(如B),因其外层只有三个价电子,这样它和硅形成共价键就少了一个电子(出现了一个空穴能级)此能级距价带很近,只差E1=0.045eV,价带中的电子激发到此能级上比越过整个禁带容易(1.1eV)。这种杂质能级称为受主能级,P型半导体。材料的电导性能II、p型半导体在硅或锗晶体中掺入少量的三价元素,如硼(或铟),晶体点阵中的某些半导体原子被杂质取代,硼原子的最外层有三个价电子,与相邻的半导体原子形成共价键时,产生一个空穴。这个空穴可能吸引束缚电子来填补,使得硼原子成为不能移动的带负电的离子。由于硼原子接受电子,所以称为受主原子。+4+4+3+4空穴硼原子P型半导体中空穴是多子,电子是少子。材料的电导性能材料的电导性能半导体的费米能的定义(化学势的概念?)当系统处于热平衡状态,也不对外界做功的情况下,系统中增加一个电子所引起的系统自由能的变化,等于系统的化学势,也就是等于系统的费米能级。化学势(Chemicalpotential):化学势就是吉布斯自由能对成分的偏微分,化学势又称为偏摩尔势能。材料的电导性能本征半导体的费米能级N型半导体的费米能级p型半导体的费米能级材料的电导性能4.3.3电子电导率本征电导率:

n型、P型半导体电导率:与杂质无关

杂质引起低温时,第二项起作用,杂质电导起主要作用;高温时,杂质已全部离解,本征电导起作用。材料的电导性能4.3.4电子电导率的影响因素温度的影响一般情况下,μ受T的影响比起载流子浓度n受T的影响要小得多,因此电导率对温度的依赖关系主要取决于浓度项。在温度变化不大时,电导率与温度关系符合指数式。材料的电导性能4.4金属材料的电导4.4.1金属电导率马西森定律材料的电导性能4.4.2电阻率与温度的关系图4-16低温下杂质、晶体缺陷对金属电阻的影响1-理想金属晶体ρ=ρ(T)2–含有杂质金属ρ=ρ0+ρ(T)3–含有晶体缺陷ρ=ρ0'+ρ(T)材料的电导性能4.4.3电阻率与压力的关系在流体静压压缩时(高达1.2GPa),大多数金属的电阻率下降。这是因为在巨大的流体静压条件下,金属原子间距缩小.内部缺陷形态、电子结构、费米能和能带结构都将发生变化,显然会影响金属的电导率。材料的电导性能4.4.4冷加工和缺陷对电阻率的影响图4-21冷加工变形铁的电阻在退火时的变化1-ε=99.8%;2-ε=97.8%;3-ε=93.5%;4-ε=80%;5-ε=44%图4-20变形量对金属电阻的影响材料的电导性能4.4.5电阻率的各向异性一般在立方系晶体中金属的电阻率表现为各向同性,但在对称性较差的六方晶系、四方晶系、斜方晶系和菱面体中,导电性表现为各向异性。材料的电导性能cAu/原子百分数图4-22银-金合金电阻率与组成的关系cPd/原子百分数图4-23铜、银、金与钯组成金合金电阻率与组成的关系4.4.6固溶体的电阻率(1)形成固溶体时电阻率的变化材料的电导性能4.6半导体陶瓷的物理效应4.6.1晶界效应(1)压敏效应(Varistoreffect)压敏效应指对电压变化敏感的非线性电阻效应,即在某一临界电压以下,电阻值非常高,几乎无电流通过;超过该临界电压(敏感电压),电阻迅速降低,让电流通过。材料的电导性能材料的电导性能(2)PTC效应(PositiveTemperatureCoefficient)(1)PTC现象:随温度上升,在材料的相变点(居里点)附近,电阻率发生突变,增大了3-4个数量级。(2)PTC现象的应用主要应用:温度敏感元件;热敏电阻(P型半导体);限电流元件;恒温发热体材料的电导性能材料的电导性能4.6.2表面效应陶瓷气敏元件主要是利用半导体表面的气体吸附反应。利用表面电导率变化的信号来检测各种气体的存在和浓度。(1)半导体表面空间电荷层的形成半导体表面存在着各种表面能级,这些表面能级将作为施主或受主和半导体内部产生电子授受关系材料的电导性能(2)半导体表面吸附气体时电导率的变化半导体表面吸附气体时,半导体和吸附气体分子(或气体分子分解后形成的基团)之间由于电子的转移(即使电子的转移不那么显著)产生电荷的偏离。材料的电导性能4.6.3西贝克效应半导体两端有温差时,高温区载流子趋于扩散到较冷的区域中去。当其化学势梯度和电场梯度相等,且方向相向时,达到稳定状态。由于多数载流子要扩散到冷端,产生△V/△T,结果就产生了温差电动势-西贝克效应。材料的电导性能材料的电导性能材料的电导性能4.6.4p-n结几个问题1.p型半导体和n型半导体是电中性的吗?材料的电导性能2.两杯溶液的液位相等,浓度不相等,用连通管联通后有什么现象?为什么?分子总是从化学势高的相进入化学势低的相,从而降低系统的总自由能,并使系统达到平衡态,达到平衡时将满足温度相等TA=TB和化学势相等μA=μB。材料的电导性能半导体的费米能的定义当系统处于热平衡状态,也不对外界做功的情况下,系统中增加一个电子说引起系统自由能的变化,等于系统的化学势,也就是等于系统的费米能级。材料的电导性能4.费米能不相等的材料相连,在没有外界作用的情况下,会发生什么现象?材料的电导性能4.6.4p-n结(1)p-n结势垒的形成材料的电导性能(3)光生伏特效应材料的电导性能4.7超导体复习纯金属的电阻率和温度的关系。材料的电导性能4.7.2约瑟夫逊效应(Josephsoneffect)超导体:是在液氦甚至液氮的低温下,具有零阻导电现象的物质。材料的电导性能

补充超导特性(1)完全抗磁性当超导体冷却到临界温度以下而转变为超导态后,只要周围的外加磁场没有强到破坏超导性的程度,超导体就会把穿透到体内的磁力线完全排斥出体外,在超导体内永远

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论