2024年中考数学几何模型归纳(全国通用):13 全等模型-倍长中线与截长补短模型(教师版)_第1页
2024年中考数学几何模型归纳(全国通用):13 全等模型-倍长中线与截长补短模型(教师版)_第2页
2024年中考数学几何模型归纳(全国通用):13 全等模型-倍长中线与截长补短模型(教师版)_第3页
2024年中考数学几何模型归纳(全国通用):13 全等模型-倍长中线与截长补短模型(教师版)_第4页
2024年中考数学几何模型归纳(全国通用):13 全等模型-倍长中线与截长补短模型(教师版)_第5页
已阅读5页,还剩42页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGE专题13全等模型-倍长中线与截长补短模型全等三角形在中考数学几何模块中占据着重要地位,也是学生必须掌握的一块内容,本专题就全等三角形中的重要模型(倍长中线模型、截长补短模型)进行梳理及对应试题分析,方便掌握。模型1.倍长中线模型【模型解读】中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线.所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.(注:一般都是原题已经有中线时用,不太会有自己画中线的时候)。【常见模型及证法】1、基本型:如图1,在三角形ABC中,AD为BC边上的中线.证明思路:延长AD至点E,使得AD=DE.若连结BE,则;若连结EC,则;2、中点型:如图2,为的中点.证明思路:若延长至点,使得,连结,则;若延长至点,使得,连结,则.3、中点+平行线型:如图3,,点为线段的中点.证明思路:延长交于点(或交延长线于点),则.例1.(2023·江苏徐州·模拟预测)(1)阅读理解:如图①,在中,若,,求边上的中线的取值范围.可以用如下方法:将绕着点逆时针旋转得到,在中,利用三角形三边的关系即可判断中线的取值范围是______;(2)问题解决:如图②,在中,是边上的中点,于点,交于点,交于点,连接,求证:;(3)问题拓展:如图③,在四边形中,,,,以为顶点作一个的角,角的两边分别交、于、两点,连接,探索线段,,之间的数量关系,并说明理由.【答案】(1);(2)见详解;(3),理由见详解【分析】(1)根据旋转的性质可证明,,在中根据三角形三边关系即可得出答案;(2)延长FD至M,使DF=DM,连接BM,EM,可得出,根据垂直平分线的性质可得出,利用三角形三边关系即可得出结论;(3)延长AB至N,使BN=DF,连接CN,可得,证明,得出,利用角的和差关系可推出,再证明,得出,即可得出结论.【详解】解:(1)∵∴∴在中根据三角形三边关系可得出:,即∴故答案为:;(2)延长FD至M,使DF=DM,连接BM,EM,同(1)可得出,∵∴在中,∴;(3),理由如下:延长AB至N,使BN=DF,连接CN,∵∴∴∴∵∴∴(SAS)∴∴∴.【点睛】本题考查的知识点有旋转的性质、全等三角形的判定及性质、线段垂直平分线的性质、三角形三边关系、角的和差等,解答此题的关键是作出辅助线,构造出与图①中结构相关的图形.此题结构精巧,考查范围广,综合性强.例2.(2023·贵州毕节·二模)课外兴趣小组活动时,老师提出了如下问题:(1)如图1,△ABC中,若AB=5,AC=3,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,请根据小明的方法思考帮小明完成解答过程.(2)如图2,AD是△ABC的中线,BE交AC干E,交AD于F,且AE=EF.请判昕AC与BF的数量关系,并说明理由.【答案】(1)见解析(2)AC=BF,理由见解析【解析】(1)解:如图,延长AD到点E,使DE=AD,连接BE,在△ADC和△EDB中∵,∴△ADC≌△EDB(SAS).∴BE=AC=3.∵AB-BE<AE<AB+BE∵2<AE<8.∵AE=2AD∴1<AD<4.(2)AC=BF,理由如下:延长AD至点G,使GD=AD,连接BG,在△ADC和△GDB中,,∴△ADC≌△GDB(SAS).∴BG=AC,∠G=∠DAC..∵AE=EF∴∠AFE=∠FAE.∴∠DAC=∠AFE=∠BFG∴∠G=∠BFG∴BG=BF∴AC=BF.【点睛】本题考查全等三角形判定与性质,三角形三边的关系,作辅助线:延长AD到点E,使DE=AD,构造全等三角形是解题的关键.例3.(2022·山东·安丘市一模)阅读材料:如图1,在中,D,E分别是边AB,AC的中点,小亮在证明“三角形的中位线平行于第三边,且等于第三边的一半”时,通过延长DE到点F,使,连接CF,证明,再证四边形DBCF是平行四边形即得证.类比迁移:(1)如图2,AD是的中线,E是AC上的一点,BE交AD于点F,且,求证:.小亮发现可以类比材料中的思路进行证明.证明:如图2,延长AD至点M,使,连接MC,……请根据小亮的思路完成证明过程.方法运用:(2)如图3,在等边中,D是射线BC上一动点(点D在点C的右侧),连接AD.把线段CD绕点D逆时针旋转120°得到线段DE,F是线段BE的中点,连接DF、CF.请你判断线段DF与AD的数量关系,并给出证明.【答案】(1)证明见解析;(2),证明见解析【分析】(1)延长AD至M,使,连接MC,证明,结合等角对等边证明即可.(2)延长DF至点M,使,连接BM、AM,证明,△ABM是等边三角形,代换后得证.【详解】(1)证明:延长AD至M,使,连接MC.在和中,,∴,∴,,∵,∴,∵,∴,∴,∴.(2)线段DF与AD的数量关系为:.证明如下:延长DF至点M,使,连接BM、AM,如图2所示:∵点F为BE的中点,∴在和中,∵,∴∴,,∴∵线段CD绕点D逆时针旋转120°得到线段DE∴,,∴∵是等边三角形∵,,∴∵,∴在和中,∵,∴∴,,∴∴是等边三角形,∴.【点睛】本题考查了等边三角形的判定和性质,三角形全等的判定和性质,熟练掌握等边三角形的判定和性质,三角形全等的判定和性质是解题的关键.例4.(2022·河南商丘·一模)阅读材料如图1,在△ABC中,D,E分别是边AB,AC的中点,小明在证明“三角形的中位线平行于第三边,且等于第三边的一半”时,通过延长DE到点F,使EF=DE,连接CF,证明△ADE≌△CFE,再证四边形DBCF是平行四边形即得证.(1)类比迁移:如图2,AD是△ABC的中线,BE交AC于点E,交AD于点F,且AE=EF,求证:AC=BF.小明发现可以类比材料中的思路进行证明.证明:如图2,延长AD至点M,使MD=FD,连接MC,……请根据小明的思路完成证明过程.(2)方法运用:如图3,在等边△ABC中,D是射线BC上一动点(点D在点C的右侧),连接AD.把线段CD绕点D逆时针旋转120°得到线段DE.F是线段BE的中点,连接DF,CF.请你判断线段DF与AD的数量关系,并给出证明;【答案】(1)见解析(2)线段DF与AD的数量关系为:AD=2DF,证明见解析;【分析】(1)类比材料,运用倍长中线辅助线作法,证得结论.(2)运用倍长中线辅助线作法,结合三角形全等证明及等边三角形性质,得出结论.(1)证明:如图,延长AD至M,使MD=FD,连接MC,在△BDF和△CDM中,∵,∴△BDF≌△CDM(SAS),∴MC=BF,∠M=∠BFM,∵AE=EF,∴∠EAF=∠EFA,∵∠EFA=∠BFM,∴∠M=∠MAC,∴AC=MC,∴AC=BF;(2)解:线段DF与AD的数量关系为:AD=2DF,证明如下:延长DF至点M,使DF=FM,连接BM、AM,如图所示:∵点F为BE的中点,∴BF=EF,在△BFM和△EFD中,∵,∴△BFM≌△EFD(SAS),∴BM=DE,∠MBF=∠DEF,∴BM∥DE,∵线段CD绕点D逆时针旋转120°得到线段DE,∴CD=DE=BM,∠BDE=120°,∴∠MBD=180°﹣120°=60°,∵△ABC是等边三角形,∴AB=AC,∠ABC=∠ACB=60°,∴∠ABM=∠ABC+∠MBD=60°+60°=120°,∵∠ACD=180°﹣∠ACB=180°﹣60°=120°,∴∠ABM=∠ACD,在△ABM和△ACD中,∵,∴△ABM≌△ACD(SAS),∴AM=AD,∠BAM=∠CAD,∴∠MAD=∠MAC+∠CAD=∠MAC+∠BAM=∠BAC=60°,∴△AMD是等边三角形,∴AD=DM=2DF;【点睛】本题考查了倍长中线的辅助线作法,全等三角形的证明,在倍长中线构造全等三角形的基础上,综合运用相关知识是解题的关键.模型2.截长补短模型【模型解读】截长补短的方法适用于求证线段的和差倍分关系。该类题目中常出现等腰三角形、角平分线等关键词句,可以采用截长补短法构造全等三角形来完成证明过程,截长补短法(往往需证2次全等)。截长:指在长线段中截取一段等于已知线段;补短:指将短线段延长,延长部分等于已知线段。【常见模型及证法】(1)截长:在较长线段上截取一段等于某一短线段,再证剩下的那一段等于另一短线段。例:如图,求证BE+DC=AD方法:=1\*GB3①在AD上取一点F,使得AF=BE,证DF=DC;=2\*GB3②在AD上取一点F,使DF=DC,证AF=BE(2)补短:将短线段延长,证与长线段相等例:如图,求证BE+DC=AD方法:=1\*GB3①延长DC至点M处,使CM=BE,证DM=AD;=2\*GB3②延长DC至点M处,使DM=AD,证CM=BE例1.(2023·重庆·九年级专题练习)如图,已知AD∥BC,∠PAB的平分线与∠CBA的平分线相交于E,CE的连线交AP于D.求证:AD+BC=AB.【答案】证明见解析【分析】如图,在上截取证明再证明可得从而可得结论.【详解】证明:如图,在上截取平分平分【点睛】本题考查的是全等三角形的判定与性质,掌握“利用截长补短的方法证明两条线段的和等于另一条线段”是解题的关键.例2.(2023·广东肇庆·校考一模)课堂上,老师提出了这样一个问题:如图1,在中,平分交于点D,且,求证:,小明的方法是:如图2,在上截取,使,连接,构造全等三角形来证明.(1)小天提出,如果把小明的方法叫做“截长法”,那么还可以用“补短法”通过延长线段构造全等三角形进行证明.辅助线的画法是:延长至F,使=______,连接请补全小天提出的辅助线的画法,并在图1中画出相应的辅助线;(2)小芸通过探究,将老师所给的问题做了进一步的拓展,给同学们提出了如下的问题:如图3,点D在的内部,分别平分,且.求证:.请你解答小芸提出的这个问题(书写证明过程);(3)小东将老师所给问题中的一个条件和结论进行交换,得到的命题如下:如果在中,,点D在边上,,那么平分小东判断这个命题也是真命题,老师说小东的判断是正确的.请你利用图4对这个命题进行证明.【答案】(1),证明见解析(2)见解析(3)见解析【分析】(1)延长至F,使,连接,根据三角形的外角性质得到,则可利用证明,根据全等三角形的性质可证明结论;(2)在上截取,使,连接,则可利用证明,根据全等三角形的性质即可证明结论;(3)延长至G,使,连接,则可利用证明,根据全等三角形的性质、角平分线的定义即可证明结论.【详解】(1)证明:(1)如图1,延长至F,使,连接,则,∴,∵平分∴,

∵,∴,在和中,,∴,∴,∴.故答案为:.(2)证明:如图3,在上截取,使,连接∵分别平分,∴,∵,∴,在和中,,∴,∴,∴,∴,

∴,∴,∴.(3)证明:如图4:延长至G,使,连接,则,∴,∵,∴,∵,

∴,∴,∴,∴,在和中,,∴∴,即平分.【点睛】本题主要考查的是三角形全等的判定和性质、角平分线的定义等知识点,灵活运用全等三角形的判定定理和性质定理是解答本题的关键.例3.(2023·广西·九年级专题练习)在四边形ABDE中,C是BD边的中点.(1)如图(1),若AC平分∠BAE,∠ACE=90°,则线段AE、AB、DE的长度满足的数量关系为;(直接写出答案);(2)如图(2),AC平分∠BAE,EC平分∠AED,若∠ACE=120°,则线段AB、BD、DE、AE的长度满足怎样的数量关系?写出结论并证明.【答案】(1)AE=AB+DE;(2)猜想:AE=AB+DE+BD,证明见解析.【分析】(1)在AE上取一点F,使AF=AB,由三角形全等的判定可证得△ACB≌△ACF,根据全等三角形的性质可得BC=FC,∠ACB=∠ACF,根据三角形全等的判定证得△CEF≌△CED,得到EF=ED,再由线段的和差可以得出结论;(2)在AE上取点F,使AF=AB,连接CF,在AE上取点G,使EG=ED,连接CG,根据全等三角形的判定证得△ACB≌△ACF和△ECD≌△ECG,由全等三角形的性质证得CF=CG,进而证得△CFG是等边三角形,就有FG=CG=BD,从而可证得结论.【详解】(1)AE=AB+DE;理由:在AE上取一点F,使AF=AB.∵AC平分∠BAE,∴∠BAC=∠FAC.在△ACB和△ACF中,,∴△ACB≌△ACF(SAS),∴BC=FC,∠ACB=∠ACF.∵C是BD边的中点,∴BC=CD,∴CF=CD.∵∠ACE=90°,∴∠ACB+∠DCE=90°,∠ACF+∠ECF=90°,∴∠ECF=∠ECD.在△CEF和△CED中,,∴△CEF≌△CED(SAS),∴EF=ED.∵AE=AF+EF,∴AE=AB+DE.故答案为:AE=AB+DE;(2)猜想:AE=AB+DE+BD.证明:在AE上取点F,使AF=AB,连结CF,在AE上取点G,使EG=ED,连结CG.∵C是BD边的中点,∴CB=CD=BD.∵AC平分∠BAE,∴∠BAC=∠FAC.在△ACB和△ACF中,,∴△ACB≌△ACF(SAS),∴CF=CB,∴∠BCA=∠FCA,同理可证:CD=CG,∴∠DCE=∠GCE.∵CB=CD,∴CG=CF.∵∠ACE=120°,∴∠BCA+∠DCE=180°﹣120°=60°,∴∠FCA+∠GCE=60°,∴∠FCG=60°,∴△FGC是等边三角形,∴FG=FC=BD.∵AE=AF+EG+FG,∴AE=AB+DE+BD.【点睛】本题考查了角平分线的性质的运用,全等三角形的判定及性质的运用,等边三角形的性质的运用,能熟练应用三角形全等的判定和性质是解决问题的关键.例4.(2023·广东·九年级期末)(1)阅读理解:问题:如图1,在四边形中,对角线平分,.求证:.思考:“角平分线+对角互补”可以通过“截长、补短”等构造全等去解决问题.方法1:在上截取,连接,得到全等三角形,进而解决问题;方法2:延长到点,使得,连接,得到全等三角形,进而解决问题.结合图1,在方法1和方法2中任选一种,添加辅助线并完成证明.(2)问题解决:如图2,在(1)的条件下,连接,当时,探究线段,,之间的数量关系,并说明理由;(3)问题拓展:如图3,在四边形中,,,过点D作,垂足为点E,请直接写出线段、、之间的数量关系.【答案】(1)证明见解析;(2);理由见解析;(3).【分析】(1)方法1:在上截取,连接,得到全等三角形,进而解决问题;方法2:延长到点,使得,连接,得到全等三角形,进而解决问题;(2)延长到点,使,连接,证明,可得,即(3)连接,过点作于,证明,,进而根据即可得出结论.【详解】解:(1)方法1:在上截,连接,如图.平分,.在和中,,,,.,..,.方法2:延长到点,使得,连接,如图.平分,.在和中,,.,.,.,,.(2)、、之间的数量关系为:.(或者:,).延长到点,使,连接,如图2所示.由(1)可知,.为等边三角形.,.,..,为等边三角形.,.,,即.在和中,,.,,.(3),,之间的数量关系为:.(或者:,)解:连接,过点作于,如图3所示.,..在和中,,,,.在和中,,.,,.【点睛】本题考查了三角形全等的性质与判定,正确的添加辅助线是解题的关键.课后专项训练:1.(2023秋·福建福州·九年级校考阶段练习)如图,在△ABC中,AB=4,AC=2,点D为BC的中点,则AD的长可能是()A.1 B.2 C.3 D.4【答案】B【分析】延长AD到E,使DE=AD,连接BE.证△ADC≌△EDB(SAS),可得BE=AC=2,再利用三角形的三边关系求出AE的范围即可解决问题.【详解】解:延长AD到E,使DE=AD,连接BE,在△ADC和△EDB中,,∴△ADC≌△EDB(SAS),∴BE=AC=2,在△ABE中,AB﹣BE<AE<AB+BE,即2<2AD<6,解得1<AD<3,故选:B.【点睛】本题考查三角形的全等判定和性质,三角形三边关系定理,熟练证明三角形的全等是解题的关键.2.(2022·浙江湖州·二模)如图,在四边形中,,,,,,点是的中点,则的长为(

).A.2 B. C. D.3【答案】C【分析】延长BE交CD延长线于P,可证△AEB≌△CEP,求出DP,根据勾股定理求出BP的长,从而求出BM的长.【详解】解:延长BE交CD延长线于P,∵AB∥CD,∴∠EAB=∠ECP,在△AEB和△CEP中,∴△AEB≌△CEP(ASA)∴BE=PE,CP=AB=5又∵CD=3,∴PD=2,∵∴∴BE=BP=.故选:C.【点睛】考查了全等三角形的判定和性质和勾股定理,解题的关键是得恰当作辅助线构造全等,依据勾股定理求出BP.3.(2022·广东湛江·校考二模)已知:如图,中,E在上,D在上,过E作于F,,,,则的长为___________.【答案】/【分析】在上取一点T,使得,连接,在上取一点K,使得,连接.想办法证明,推出,推出即可解决问题.【详解】解:在上取一点T,使得,连接,在上取一点K,使得,连接.∵,,,∴,∴,,∵,∴,∵,∴,∴,∴,∴,

∴,∴,∴,∵,∴,故答案为:.【点睛】本题考查全等三角形的判定和性质,等腰三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考填空题中的压轴题.4.(2023秋·江西九江·八年级校考期末)如图,在△ABC中,点D是BC的中点,若AB=5,AC=13,AD=6,则BC的长为.【答案】【分析】延长AD到E,使DE=AD,连接BE.先运用SAS证明△ADC≌△EDB,得出BE=13.再由勾股定理的逆定理证明出∠BAE=90°,然后在△ABD中运用勾股定理求出BD的长,从而得出BC=2BD.【详解】解:延长AD到E,使DE=AD,连接BE.在△ADC与△EDB中,,∴△ADC≌△EDB(SAS),∴AC=BE=13.在△ABE中,AB=5,AE=12,BE=13,∴AB2+AE2=BE2,∴∠BAE=90°.在△ABD中,∠BAD=90°,AB=5,AD=6,∴BD=,∴BC=.故答案为:.【点睛】本题考查了全等三角形的判定与性质,勾股定理及其逆定理,综合性较强,难度中等.题中延长中线的一倍是常用的辅助线的作法.5.(2023秋·湖北武汉·八年级校考阶段练习)(1)阅读理解:如图1,在中,若,.求边上的中线的取值范围,小聪同学是这样思考的:延长至,使,连接.利用全等将边转化到,在中利用三角形三边关系即可求出中线的取值范围,在这个过程中小聪同学证三角形全等用到的判定方法是___________,中线的取值范围是___________;(2)问题解决:如图2,在中,点是的中点,.交于点,交于点.求证:;(3)问题拓展:如图3,在中,点是的中点,分别以为直角边向外作和,其中,,,连接,请你探索与的数量与位置关系.

【答案】(1),;(2)见解析;(3),【分析】(1)通过证明,得到,在中,根据三角形三边关系可得:,即,从而可得到中线的取值范围;(2)延长至点,使,连接,通过证明,得到,由,,得到,在中,由三角形的三边关系得:;(3)延长于,使得,连接,延长交于,证明得到,证明得到,,在通过三角形内角和进行角度的转化即可得到.【详解】(1)解:如图1,延长至,使,连接,为边上的中线,,在和中,,,,在中,根据三角形三边关系可得:,即,,,,故答案为:,;(2)证明:如图2中,延长至点,使,连接,

点是的中点,,在和中,,∴,∴,∵,,∴,在中,由三角形的三边关系得:,∴;(3)解:结论:,,如图3,延长于,使得,连接,延长交于,点是的中点,,在和中,,,,,,,,,在和中,,,,,,,

,,即.【点睛】本题考查了全等三角形的判定与性质,三角形的三边关系,三角形的内角和定理,熟练掌握全等三家形的判定与性质,三角形的三边关系以及三角形内角和定理,作出恰当的辅助线是解题的关键.6.(2023·黑龙江大庆·统考三模)如图,四边形中,°,为边上一点,连接,,为的中点,延长交的延长线于点,交于点,连接交于点.

(1)求证;(2)若,,求证:四边形为矩形.【答案】(1)见解析(2)见解析【分析】(1)证明,则,然后根据直角三角形斜边上的中线性质即可得到;(2)由和都是等腰直角三角形得到,则可得到,,进而可得,,于是可判断四边形为平行四边形,加上,则可判断四边形为矩形.【详解】(1)证明:∵∴∴,∵为的中点,∴,在和中,,∴∴,∴为斜边上的中线∴(2)由(1)知,又,,∴,∴为等腰直角三角形.又由(1)知,∴,,又和都是等腰直角三角形.∴,∴,,∴,,∴四边形为平行四边形,∵∴平行四边形为矩形,【点睛】本题考查了全等三角形的判断和性质、直角三角形斜边中线定理、矩形的判断,掌握矩形的证明步骤-先证明是平行四边形,再证明有直角是解题关键.7.(2023·广东云浮·八年级统考期中)(1)阅读理解:如图①,在中,若,求边上的中线的取值范围.可以用如下方法:将绕着点D逆时针旋转得到,在中,利用三角形三边的关系即可判断中线的取值范围是_______;(2)问题解决:如图②,在中,D是边上的中点,于点D,交于点E,DF交于点F,连接,求证:;(3)问题拓展:如图③,在四边形中,,,,以C为顶点作一个的角,角的两边分别交于E、F两点,连接EF,探索线段之间的数量关系,并说明理由.【答案】(1);(2)见解析;(3),理由见解析【分析】(1)如图①:将绕着点D逆时针旋转得到可得,得出,然后根据三角形的三边关系求出的取值范围,进而求得的取值范围;(2)如图②:绕着点D旋转得到可得,得出,由线段垂直平分线的性质得出,在中,由三角形的三边关系得出即可得出结论;(3)将绕着点C按逆时针方向旋转得到可得,得出,证出,再由证明,得出,进而证明结论.【详解】解:(1)如图①:将绕着点D逆时针旋转得到∴(),∴,,即∵是边上的中线,∴,在中,由三角形的三边关系得:,∴,即,∴;故答案为;(2)证明:如图②:绕着点D旋转得到∴(),∴,∵∴,在中,由三角形的三边关系得:,∴;(3),理由如下:如图③,将绕着点C按逆时针方向旋转∴△DCF≌△BCH,∴∴∵∴,∴点A、B、H三点共线∵,∴∴,在和中,,∴()∴,∵∴.【点睛】本题属于三角形综合题,主要考查对全等三角形的性质和判定、三角形的三边关系定理、旋转的性质等知识点,通过旋转得到构造全等三角形是解答本题的关键.8.(2023·江苏·九年级假期作业)(1)如图1,AD是△ABC的中线,延长AD至点E,使ED=AD,连接CE.①证明△ABD≌△ECD;②若AB=5,AC=3,设AD=x,可得x的取值范围是_______;(2)如图2,在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF.【答案】(1)①见解析;②1<x<4;(2)见解析【分析】(1)由AD是△ABC的中线推出CD=BD,再用SAS证明即可;(2)由△ABD≌△ECD推出AB=EC=5,由ED=AD推出AE=2x,由△ACE三边关系将已求代入解不等式即可;(3)延长FD到G,使得DG=DF,连接BG、EG.用SAS证明△CDF≌△BDG,△EDF≌△EDG,从而得到CF=BG,EF=EG,最后利用在△BEG的三边关系BE+BG>EG得证.【详解】(1)①∵AD是△ABC的中线,∴CD=BD,在△ABD与△ECD中,,∴△ABD≌△ECD(SAS)②1<x<4,理由如下:∵△ABD≌△ECD,AB=5,∴AB=EC=5,∵ED=AD,AD=x,∴AE=2x.由△ACE三边关系得:,又∵AC=3,∴,解得:1<x<4.故答案是:1<x<4.(2)延长FD到G,使得DG=DF,连接BG、EG.∵D是BC边上的中点,∴CD=DB.在△CDF与△BDG中,,∴△CDF≌△BDG(SAS).∴CF=BG,∵DE⊥DF,∴.

在△EDF与△EDG中,,∴△EDF≌△EDG.∴EF=EG.在△BEG中,BE+BG>EG,即BE+CF>EF.【点睛】本题考查了三角形的三边关系和全等三角形的性质与判定,根据题意画辅助线是解题的关键.9.(2022秋·北京昌平·九年级校联考期中)如图,O为四边形ABCD内一点,E为AB的中点,OA=OD,OB=OC,∠AOB+∠COD=.(1)若∠BOE=∠BAO,AB=,求OB的长;(2)用等式表示线段OE和CD之间的关系,并证明.【答案】(1)2;(2),理由见解析【分析】(1)由已知条件∠BOE=∠BAO,且公共角,证明△OBE∽△ABO,进而列出比例式,代入数值即可求得;(2)延长OE到点F,使得,连接AF,FB,证明△AOF≌△DOC,进而可得,即【详解】(1)解:∵∠BOE=∠BAO,,∴△OBE∽△ABO,∴,∵AB=,E为AB的中点,∴∴,∴(舍负).(2)线段OE和CD的数量关系是:,理由如下,证明:如图,延长OE到点F,使得,连接AF,FB.∵∴四边形AFBO是平行四边形,∴,,∴,∵∠AOB+∠COD=,∴,∵OB=OC,∴,在△AOF和△DOC中,,∴△AOF≌△ODC,∴∴.【点睛】本题考查了相似三角形的性质与判定,全等三角形的性质与判定,平行四边形的性质与判定,第(2)小问中,根据题意正确的添加辅助线是解题的关键.10.(2022秋·安徽·九年级校联考阶段练习)安安利用两张正三角形纸片,进行了如下探究:

【探究证明】(1)如图1,和均为等边三角形,连接交延长线于点,求证:;【拓展延伸】(2)如图2,在正三角形纸片的边上取一点,作交外角平分线于点,探究,和的数量关系,并证明;【思维提升】(3)如图3,和均为正三角形,当,,三点共线时,连接,若,直接写出下列两式分别是否为定值,并任选其中一个进行证明:①;②.【答案】(1)见解析;(2),证明见解析;(3)是定值,①;②.【分析】(1)证明,推出,再根据角度的和差可得结论;(2)如图2,在上取一点,使得,证明是等边三角形,然后证明,可得,利用线段的和差即可解决问题;(3)如图3,在上取一点,使得,证明,,,证明是等边三角形,所以,过点作,,垂足分别为,,根据,可得的面积的面积,根据,可得,根据,可得,所以,,进而可以解决问题.【详解】(1)证明:如图1,设与交于点,

,都是等边三角形,,,,,在和中,,,,,;(2)解:,理由如下:如图2,在上取一点,使得,是等边三角形,,,是等边三角形,,,,是外角平分线,,,,,,,,,,,,;(3)解:①,②都是定值,证明如下:如图3,在上取一点,使得,

和均为正三角形,,,三点共线,,,由(1)知:,,,,,,是等边三角形,,过点作,,垂足分别为,,,的面积的面积,,,,,,,①;②,,,.综上所述:①,②都是定值.【点睛】本题属于三角形综合题,考查了等边三角形的性质,全等三角形的判定和性质,解题的关键是正确的作出图形寻找全等三角形.11.(2023秋·河南驻马店·八年级统考期末)(1)阅读理解:问题:如图1,在四边形中,对角线平分,.求证:.思考:“角平分线+对角互补”可以通过“截长、补短”等构造全等去解决问题.方法1:在上截取,连接,得到全等三角形,进而解决问题;方法2:延长到点,使得,连接,得到全等三角形,进而解决问题.结合图1,在方法1和方法2中任选一种,添加辅助线并完成证明.(2)问题解决:如图2,在(1)的条件下,连接,当时,探究线段,,之间的数量关系,并说明理由;(3)问题拓展:如图3,在四边形中,,,过点作,垂足为点,请写出线段、、之间的数量关系并说明理由.【答案】(1)见解析;(2),见解析;(3),见解析【分析】(1)方法1:在上截取,连接,证明,得出,,进而得出,则,等量代换即可得证;方法:延长到,使,连接,证明,得出,,进而得出,则,等量代换即可得证(2),,之间的数量关系为.方法1:在上截取,连接,由知,得出,为等边三角形,证明,得出,进而即可得证;方法:延长到,使,连接,由知,则,是等边三角形,证明,得出,进而即可得证;(3)线段、、之间的数量关系为,连接,过点作于点,证明,和,得出,进而即可得证.【详解】解:(1)方法1:在上截取,连接,平分,,在和中,,,,,,,,,;方法:延长到,使,连接,平分,,在和中,,,,,,,,,;(2),,之间的数量关系为.方法1:理由如下:如图,在上截取,连接,由知,,,,,为等边三角形,,,,为等边三角形,,,,,,.方法:理由:延长到,使,连接,由知,,是等边三角形,,,,,,,为等边三角形,,,,,即,在和中,,,,,;(3)线段、、之间的数量关系为.连接,过点作于点,,,,在和中,,,,,在和中,,,,,,【点睛】本题考查了全等三角形的性质与判定,掌握全等三角形的性质与判定是解题的关键.12.(2023·浙江衢州·校考一模)如图1,在中,,平分,连接,,.(1)求的度数;(2)如图2,连接,交于E,连接,求证:;(3)如图3,在(2)的条件下,点G为的中点,连接交于点F,若,求线段的长.【答案】(1)(2)见解析(3)【分析】(1)设.则,,由平分,得到,由三角形内角和定理,求得,进一步即可得到答案;(2)先证明,则,则,又由得,即可得到结论;(3)由O是的中点及得到,再证明,得到,则,又由,即可得到答案.【详解】(1)解:如图1中,设.∵,,∴,,∵平分,∴,∵,,∴,∴,∴,,∴.(2)证明:∵,∴,∴,∵,∴,∴,∴,∵,∴,∴.(3)解:如图3中,连接,取O是的中点,∵,∴或(舍去),由(1)、(2)及根据G是的中点可知:,,,,∴,∵,∴,∴,∴,又,∴.【点睛】此题考查了全等三角形的判定和性质、相似三角形的判定和性质、三角形内角和定理、角直角三角形的性质,熟练掌握三角形的全等和相似是解题的关键.13.(2023春·广东·九年级专题练习)课堂上,老师提出了这样一个问题:如图1,在中,平分交于点D,且,求证:,小明的方法是:如图2,在上截取,使,连接,构造全等三角形来证明.(1)小天提出,如果把小明的方法叫做“截长法”,那么还可以用“补短法”通过延长线段构造全等三角形进行证明.辅助线的画法是:延长至F,使=______,连接请补全小天提出的辅助线的画法,并在图1中画出相应的辅助线;(2)小芸通过探究,将老师所给的问题做了进一步的拓展,给同学们提出了如下的问题:如图3,点D在的内部,分别平分,且.求证:.请你解答小芸提出的这个问题(书写证明过程);(3)小东将老师所给问题中的一个条件和结论进行交换,得到的命题如下:如果在中,,点D在边上,,那么平分小东判断这个命题也是真命题,老师说小东的判断是正确的.请你利用图4对这个命题进行证明.【答案】(1),证明见解析(2)见解析(3)见解析【分析】(1)延长至F,使,连接,根据三角形的外角性质得到,则可利用证明,根据全等三角形的性质可证明结论;(2)在上截取,使,连接,则可利用证明,根据全等三角形的性质即可证明结论;(3)延长至G,使,连接,则可利用证明,根据全等三角形的性质、角平分线的定义即可证明结论.【详解】(1)证明:(1)如图1,延长至F,使,连接,则,∴,∵平分∴,

∵,∴,在和中,,∴,∴,∴.故答案为:.(2)证明:如图3,在上截取,使,连接∵分别平分,∴,∵,∴,在和中,,∴,∴,∴,∴,

∴,∴,∴.(3)证明:如图4:延长至G,使,连接,则,∴,∵,∴,∵,

∴∴,∴,∴,在和中,,∴∴,即平分.【点睛】本题主要考查的是三角形全等的判定和性质、角平分线的定义等知识点,灵活运用全等三角形的判定定理和性质定理是解答本题的关键.14.(2023春·广东深圳·九年级校考期中)如图,△ABC为等边三角形,直线l过点C,在l上位于C点右侧的点D满足∠BDC=60°。(1)如图1,在l上位于C点左侧取一点E,使∠AEC=60°,求证:△AEC≌△CDB;(2)如图2,点F、G在直线l上,连AF,在l上方作∠AFH=120°,且AF=HF,∠HGF=120°,求证:HG+BD=CF;(3)在(2)的条件下,当A、B位于直线l两侧,其余条件不变时(如图3),线段HG、CF、BD的数量关系为.【答案】(1)见解析;(2)见解析;(3)CF=EF-BD.【分析】(1)先证明∠ACE=∠CBD,即可利用AAS证明△AEC≌△CDB;(2)在直线l上位于C点左侧取一点E,使得∠AEC=60°,连接AE,由(1)可知△AEC≌△CDB,CE=BD,然后证明△FAE≌△HFG得到GH=EF,则CF=EF+CE=GH+BD即HG+BD=CF;(3)在直线l上位于C点右侧取一点E使得∠AED=60°,连接AE,在直线l上位于D点左侧取一点M使得BM=BD,设AB与直线l交于N,先证明△BDM是等边三角形,得到∠DBM=∠DMB=60°,然后证明∠ACE=∠ABD=∠CBM,即可利用AAS证明△AEC≌△CMB得到CE=BM=BD;最后证明△AEF≌△FGH得到HG=EF,则EF=CE+CF=CF+BD即CF=EF-BD.【详解】解:(1)∵△ABC是等边三角形,∴AC=BC,∠ACB=60°,∴∠ACE+∠BCD=180°-∠ACB=120°,∵∠BDC=60°,∴∠BCD+∠CBD=180°-∠BDC=120°,∴∠ACE=∠CBD,在△AEC和△CDB中,,∴△AEC≌△CDB(AAS)(2)如图所示,在直线l上位于C点左侧取一点E,使得∠AEC=60°,连接AE,由(1)可知△AEC≌△CDB,∴CE=BD,∵∠ACE=60°,∴∠AEF=120°,∴∠AEF=∠AFH=120°,∴∠AFE+∠FAE=180°-∠AEF=60°,∠AFE+∠HFG=180°-∠AFH=60°,∴∠FAE=∠HFG,在△FAE和△HFG中,,∴△FAE≌△HFG(AAS),∴GH=EF,∴CF=EF+CE=GH+BD即HG+BD=CF;(3)如图所示,在直线l上位于C点右侧取一点E使得∠AED=60°,连接AE,在直线l上位于D点左侧取一点M使得BM=BD,设AB与直线l交于N∵∠BDC=60°,BM=BD,∴△BDM是等边三角形,∴∠DBM=∠DMB=60°,∵三角形ABC是等边三角形,∴∠ABC=∠BAC=60°,AC=BC∴∠ABM+∠CBM=∠ABM+∠ABD,∴∠ABD=∠CBM,∵∠BAC=∠BDC=60°,∠ANE=∠DNB,∴∠ACE=∠ABD=∠CBM,∵∠CMB=180°-∠DMB=120°,∠AEC=180°-∠AED=120°,∴∠CMB=∠AEC,在△AEC和△CMB中,,∴△AEC≌△CMB(AAS),∴CE=BM=BD;∵∠AFH=120°,∴∠AFC+∠GFH=60°,∵∠GFH+∠FHG=180°-∠HGF=60°,∴∠AFC=∠FHG,在△AEF和△FGH中,,∴△AEF≌△FGH(AAS),∴HG=EF,∴EF=CE+CF=CF+BD即CF=EF-BD.故答案为:CF=EF-BD.【点睛】本题主要考查了全等三角形的性质与判定,等边三角形的性质与判定,三角形内角和定理,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.15.(2022·河南·模拟预测)(1)如图①,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且∠EAF=60°,探究图中线段BE、EF、FD之间的数量关系.某同学做了如下探究,延长FD到点G,使DG=BE,连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应该是______.(2)如图②,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且∠EAF=∠BAD,上述结论是否依然成立?若成立,请说明理由;若不成立,写出正确的结论,并说明理由.(3)如图③,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/时的速度前进,舰艇乙沿北偏东50°的方向以80海里/时的速度前进1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E、F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.【答案】(1)EF=BE+DF;(2)结论EF=BE+DF仍然成立;理由见解析;(3)此时两舰艇之间的距离是210海里【分析】(1)根据题意证明△ABE≌△ADG,△AEF≌△AGF,可得EF=FG,根据FG=DG+DF=BE+DF,可得EF=BE+DF;(2)延长FD到点G.使DG=BE.连结AG,同(1)的方法证明即可;(3)连接EF,延长AE、BF相交于点C,应用(2)的结论可得EF=AE+BF进而气得的长,即两舰艇之间的距离【详解】(1)EF=BE+DF,证明如下:在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△AGF中,,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;故答案为EF=BE+DF.(2)结论EF=BE+DF仍然成立;理由:延长FD到点G.使DG=BE.连结AG,如图②,∵∠B+∠ADF=180°,∠ADG+∠ADF=180°,∴∠B=∠ADG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△AGF中,,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;(3)如图③,连接EF,延长AE、BF相交于点C,∵∠AOB=30°+90°+(90°-70°)=140°,∠EOF=70°,∴∠EOF=∠AOB,又∵OA=OB,∠OAC+∠OBC=(90°-30°)+(70°+50°)=180°,∴符合探索延伸中的条件,∴结论EF=AE+BF成立,即EF=1.5×(60+80)=210海里.答:此时两舰艇之间的距离是210海里.【点睛】本题考查全等三角形的性质与判定,方位角的计算,掌握全等三角形的性质与判定是解题的关键.16.(2022·河南·九年级期中)课外兴趣小组活动时,老师提出了如下问题:如图1,在△ABC中,若AB=5,AC=3,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到E,使得DE=AD,再连接BE(或将△ACD绕点D逆时针旋转180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形的三边关系可得2<AE<8,则1<AD<4.【感悟】解题时,条件中若出现中点、中线字样,可以考虑构造以中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同一个三角形中.【解决问题】受到(1)的启发,请你证明下列命题:如图2,在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.(1)求证:BE+CF>EF,(2)若∠A=90°,探索线段BE、CF、EF之间的等量关系,并加以证明.、【答案】(1)见解析;(2),见解析【分析】(1)延长FD到G,使得DG=DF,连接BG、EG.(或把△CFD绕点D逆时针旋转180°得到△BGD),利用三角形的三边关系即可解决问题;(2)若∠A=90°,则∠EBC+∠FCB=90°,在Rt△EBG中,根据BE2+BG2=EG2,即可解决问题;【详解】解:(1)延长FD到G,使得DG=DF,连接BG、EG.(或把△CFD绕点D逆时针旋转180°得到△BGD),∴CF=BG,DF=DG,∵DE⊥DF,∴EF=EG.在△BEG中,BE+BG>EG,即BE+CF>EF.(2)若∠A=90°,则∠EBC+∠FCB=90°,由(1)知∠FCD=∠DBG,EF=EG,∴∠EBC+∠DBG=90°,即∠EBG=90°,∴在Rt△EBG中,BE2+BG2=EG2,∴BE2+CF2=EF2;【点睛】本题考查了旋转的性质、全等三角形的判定和性质、三角形的三边关系、勾股定理、三角形的面积等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.17.(2022·山东东营·中考真题)已知点O是线段AB的中点,点P是直线l上的任意一点,分别过点A和点B作直线l的垂线,垂足分别为点C和点D.我们定义垂足与中点之间的距离为“足中距”.(1)[猜想验证]如图1,当点P与点O重合时,请你猜想、验证后直接写出“足中距”OC和OD的数量关系是________.(2)[探究证明]如图2,当点P是线段AB上的任意一点时,“足中距”OC和OD的数量关系是否依然成立,若成立,请给出证明;若不成立,请说明理由.(3)[拓展延伸]如图3,当点P是线段BA延长线上的任意一点时,“足中距”OC和OD的数量关系是否依然成立,若成立,请给出证明;若不成立,请说明理由;【答案】(1);(2)仍然成立,证明见解析;(3)①仍然成立,证明见解析;②【分析】(1)根据三角形全等可得;(2)方法一:过点O作直线,交BD于点F,延长AC交EF于点E,证明即可,方法二:延长CO交BD于点E,证明即可;(3)方法一:过点O作直线,交BD于点F,延长CA交EF于点E,证明,方法二:延长CO交DB的延长线于点E,证明;【详解】(1)O是线段AB的中点在和中(2)数量关系依然成立.证明(方法一):过点O作直线,交BD于点F,延长AC交EF于点E.∵∴∴四边形CEFD为矩形∴,由(1)知,∴,∴.证明(方法二):延长CO交BD于点E,∵,,∴,∴,∵点O为AB的中点∴,又∵,∴,∴,∵,∴.(3)数量关系依然成立.证明(方法一):过点O作直线,交BD于点F,延长CA交EF于点E.∵∴∴四边形CEFD为矩形.∴,由(1)知,∴,∴.10分证明(方法二):延长CO交DB的延长线于点E,∵,,∴,∴,∴点O为AB的中点,∴,又∵,∴,∴,∵,∴.【点睛】此题主要考查了三角形全等的性质与判定,直角三角形的性质,根据题意找到全等的三角形,证明线段相等,是解题的关键.18.(2022·北京·中考真题)在中,,D为内一点,连接,,延长到点,使得(1)如图1,延长到点,使得,连接,,若,求证:;(2)连接,交的延长线于点,连接,依题意补全图2,若,用等式表示线段与的数量关系,并证明.【答案】(1)见解析(2);证明见解析【分析】(1)先利用已知条件证明,得出,推出,再由即可证明;(2)延长BC到点M,使CM=CB,连接EM,AM,先证,推出,通过等量代换得到,利用平行线的性质得出,利用直角三角形斜边中线等于斜边一半即可得到.(1)证明:在和中,,∴,∴,∴,∵,∴.(2)解:补全后的图形如图所示,,证明如下:延长BC到点M,使CM=CB,连接EM,AM,∵,CM=CB,∴垂直平分BM,∴,在和中,,∴,∴,,∵,∴,∴,∵,∴,∴,即,∵,∴,∴.【点睛】本题考查全等三角形的判定与性质,垂直平分线的性质,平行线的判定与性质,勾股定理的逆用,直角三角形斜边中线的性质等,第二问有一定难度,正确作辅助线,证明是解题的关键.19.(2022·内蒙古·中考真题)下面图片是八年级教科书中的一道题:如图,四边形是正方形,点是边的中点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论