版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
青海省海西2024年毕业升学考试模拟卷数学卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店()A.赚了10元 B.赔了10元 C.赚了50元 D.不赔不赚2.下列计算正确的是()A.3a﹣2a=1 B.a2+a5=a7 C.(ab)3=ab3 D.a2•a4=a63.若等式x2+ax+19=(x﹣5)2﹣b成立,则a+b的值为()A.16 B.﹣16 C.4 D.﹣44.在函数y=中,自变量x的取值范围是()A.x≥1 B.x≤1且x≠0 C.x≥0且x≠1 D.x≠0且x≠15.从3、1、-2这三个数中任取两个不同的数作为P点的坐标,则P点刚好落在第四象限的概率是()A. B. C. D.6.某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有()A.4个 B.5个 C.6个 D.7个7.如图,在矩形AOBC中,O为坐标原点,OA、OB分别在x轴、y轴上,点B的坐标为(0,3),∠ABO=30°,将△ABC沿AB所在直线对折后,点C落在点D处,则点D的坐标为()A.(,) B.(2,) C.(,) D.(,3﹣)8.若正多边形的一个内角是150°,则该正多边形的边数是()A.6B.12C.16D.189.在中,,,下列结论中,正确的是()A. B.C. D.10.对于不为零的两个实数a,b,如果规定:a★b=,那么函数y=2★x的图象大致是()A. B. C. D.11.对于一组统计数据1,1,6,5,1.下列说法错误的是()A.众数是1 B.平均数是4 C.方差是1.6 D.中位数是612.如图,已知,用尺规作图作.第一步的作法以点为圆心,任意长为半径画弧,分别交,于点,第二步的作法是()A.以点为圆心,长为半径画弧,与第1步所画的弧相交于点B.以点为圆心,长为半径画弧,与第1步所画的弧相交于点C.以点为圆心,长为半径画弧,与第1步所画的弧相交于点D.以点为圆心,长为半径画弧,与第1步所画的弧相交于点二、填空题:(本大题共6个小题,每小题4分,共24分.)13.函数y=中,自变量x的取值范围是_____.14.已知二次函数的图像与轴交点的横坐标是和,且,则________.15.已知a+1a=3,则a16.分解因式:a3-a=17.对于函数y=,当函数y﹤-3时,自变量x的取值范围是____________.18.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则黄球的个数为______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,直线y=2x+6与反比例函数y=(k>0)的图像交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图像于点M,交AB于点N,连接BM.求m的值和反比例函数的表达式;直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?20.(6分)如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0)B(3,0)两点,与y轴交于点C.求抛物线y=ax2+2x+c的解析式:;点D为抛物线上对称轴右侧、x轴上方一点,DE⊥x轴于点E,DF∥AC交抛物线对称轴于点F,求DE+DF的最大值;①在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;②点Q在抛物线对称轴上,其纵坐标为t,请直接写出△ACQ为锐角三角形时t的取值范围.21.(6分)如图,四边形ABCD的四个顶点分别在反比例函数与(x>0,0<m<n)的图象上,对角线BD//y轴,且BD⊥AC于点P.已知点B的横坐标为1.当m=1,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.22.(8分)如图,在平面直角坐标系中,矩形DOBC的顶点O与坐标原点重合,B、D分别在坐标轴上,点C的坐标为(6,4),反比例函数y=(x>0)的图象经过线段OC的中点A,交DC于点E,交BC于点F.(1)求反比例函数的解析式;(2)求△OEF的面积;(3)设直线EF的解析式为y=k2x+b,请结合图象直接写出不等式k2x+b>的解集.23.(8分)小林在没有量角器和圆规的情况下,利用刻度尺和一副三角板画出了一个角的平分线,他的作法是这样的:如图:(1)利用刻度尺在∠AOB的两边OA,OB上分别取OM=ON;(2)利用两个三角板,分别过点M,N画OM,ON的垂线,交点为P;(3)画射线OP.则射线OP为∠AOB的平分线.请写出小林的画法的依据______.24.(10分)如图,点A.F、C.D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.(1)求证:四边形BCEF是平行四边形,(2)若∠ABC=90°,AB=4,BC=3,当AF为何值时,四边形BCEF是菱形.25.(10分)(y﹣z)1+(x﹣y)1+(z﹣x)1=(y+z﹣1x)1+(z+x﹣1y)1+(x+y﹣1z)1.求的值.26.(12分)某商场,为了吸引顾客,在“白色情人节”当天举办了商品有奖酬宾活动,凡购物满200元者,有两种奖励方案供选择:一是直接获得20元的礼金券,二是得到一次摇奖的机会.已知在摇奖机内装有2个红球和2个白球,除颜色外其它都相同,摇奖者必须从摇奖机内一次连续摇出两个球,根据球的颜色(如表)决定送礼金券的多少.球两红一红一白两白礼金券(元)182418(1)请你用列表法(或画树状图法)求一次连续摇出一红一白两球的概率.(2)如果一名顾客当天在本店购物满200元,若只考虑获得最多的礼品券,请你帮助分析选择哪种方案较为实惠.27.(12分)先化简,再求值:1+xx2-1
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、A【解题分析】试题分析:第一个的进价为:80÷(1+60%)=50元,第二个的进价为:80÷(1-20%)=100元,则80×2-(50+100)=10元,即盈利10元.考点:一元一次方程的应用2、D【解题分析】
根据合并同类项法则、积的乘方及同底数幂的乘法的运算法则依次计算后即可解答.【题目详解】∵3a﹣2a=a,∴选项A不正确;∵a2+a5≠a7,∴选项B不正确;∵(ab)3=a3b3,∴选项C不正确;∵a2•a4=a6,∴选项D正确.故选D.【题目点拨】本题考查了合并同类项法则、积的乘方及同底数幂的乘法的运算法则,熟练运用法则是解决问题的关键.3、D【解题分析】分析:已知等式利用完全平方公式整理后,利用多项式相等的条件求出a与b的值,即可求出a+b的值.详解:已知等式整理得:x2+ax+19=(x-5)2-b=x2-10x+25-b,可得a=-10,b=6,则a+b=-10+6=-4,故选D.点睛:此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.4、C【解题分析】
根据分式和二次根式有意义的条件进行计算即可.【题目详解】由题意得:x≥2且x﹣2≠2.解得:x≥2且x≠2.故x的取值范围是x≥2且x≠2.故选C.【题目点拨】本题考查了函数自变量的取值范围问题,掌握分式和二次根式有意义的条件是解题的关键.5、B【解题分析】解:画树状图得:∵共有6种等可能的结果,其中(1,-2),(3,-2)点落在第四项象限,∴P点刚好落在第四象限的概率==.故选B.点睛:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件,熟记各象限内点的符号特点是解题的关键.6、B【解题分析】
由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数.【题目详解】由主视图和左视图可确定所需正方体个数最少时俯视图(数字为该位置小正方体的个数)为:则搭成这个几何体的小正方体最少有5个,故选B.【题目点拨】本题考查了由三视图判断几何体,根据主视图和左视图画出所需正方体个数最少的俯视图是关键.【题目详解】请在此输入详解!【题目点拨】请在此输入点睛!7、A【解题分析】解:∵四边形AOBC是矩形,∠ABO=10°,点B的坐标为(0,),∴AC=OB=,∠CAB=10°,∴BC=AC•tan10°=×=1.∵将△ABC沿AB所在直线对折后,点C落在点D处,∴∠BAD=10°,AD=.过点D作DM⊥x轴于点M,∵∠CAB=∠BAD=10°,∴∠DAM=10°,∴DM=AD=,∴AM=×cos10°=,∴MO=﹣1=,∴点D的坐标为(,).故选A.8、B【解题分析】设多边形的边数为n,则有(n-2)×180°=n×150°,解得:n=12,故选B.9、C【解题分析】
直接利用锐角三角函数关系分别计算得出答案.【题目详解】∵,,∴,∴,故选项A,B错误,∵,∴,故选项C正确;选项D错误.故选C.【题目点拨】此题主要考查了锐角三角函数关系,熟练掌握锐角三角函数关系是解题关键.10、C【解题分析】
先根据规定得出函数y=2★x的解析式,再利用一次函数与反比例函数的图象性质即可求解.【题目详解】由题意,可得当2<x,即x>2时,y=2+x,y是x的一次函数,图象是一条射线除去端点,故A、D错误;当2≥x,即x≤2时,y=﹣,y是x的反比例函数,图象是双曲线,分布在第二、四象限,其中在第四象限时,0<x≤2,故B错误.故选:C.【题目点拨】本题考查了新定义,函数的图象,一次函数与反比例函数的图象性质,根据新定义得出函数y=2★x的解析式是解题的关键.11、D【解题分析】
根据中位数、众数、方差等的概念计算即可得解.【题目详解】A、这组数据中1都出现了1次,出现的次数最多,所以这组数据的众数为1,此选项正确;B、由平均数公式求得这组数据的平均数为4,故此选项正确;C、S2=[(1﹣4)2+(1﹣4)2+(6﹣4)2+(5﹣4)2+(1﹣4)2]=1.6,故此选项正确;D、将这组数据按从大到校的顺序排列,第1个数是1,故中位数为1,故此选项错误;故选D.考点:1.众数;2.平均数;1.方差;4.中位数.12、D【解题分析】
根据作一个角等于已知角的作法即可得出结论.【题目详解】解:用尺规作图作∠AOC=2∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,
第二步的作图痕迹②的作法是以点F为圆心,EF长为半径画弧.
故选:D.【题目点拨】本题考查的是作图-基本作图,熟知作一个角等于已知角的步骤是解答此题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、x≠﹣.【解题分析】
该函数是分式,分式有意义的条件是分母不等于1,故分母x﹣1≠1,解得x的范围.【题目详解】解:根据分式有意义的条件得:2x+3≠1解得:故答案为【题目点拨】本题考查了函数自变量取值范围的求法.要使得本题函数式子有意义,必须满足分母不等于1.14、-12【解题分析】
令y=0,得方程,和即为方程的两根,利用根与系数的关系求得和,利用完全平方式并结合即可求得k的值.【题目详解】解:∵二次函数的图像与轴交点的横坐标是和,令y=0,得方程,则和即为方程的两根,∴,,∵,两边平方得:,∴,即,解得:,故答案为:.【题目点拨】本题考查了一元二次方程与二次函数的关系,函数与x轴的交点的横坐标就是方程的根,解题的关键是利用根与系数的关系,整体代入求解.15、7【解题分析】
根据完全平方公式可得:原式=(a+116、【解题分析】a3-a=a(a2-1)=17、-<x<0【解题分析】
根据反比例函数的性质:y随x的增大而减小去解答.【题目详解】解:函数y=中,y随x的增大而减小,当函数y﹤-3时又函数y=中,故答案为:-<x<0.【题目点拨】此题重点考察学生对反比例函数性质的理解,熟练掌握反比例函数性质是解题的关键.18、1【解题分析】首先设黄球的个数为x个,然后根据概率公式列方程即可求得答案.解:设黄球的个数为x个,根据题意得:=2/3解得:x=1.∴黄球的个数为1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)m=8,反比例函数的表达式为y=;(2)当n=3时,△BMN的面积最大.【解题分析】
(1)求出点A的坐标,利用待定系数法即可解决问题;(2)构造二次函数,利用二次函数的性质即可解决问题.【题目详解】解:(1)∵直线y=2x+6经过点A(1,m),∴m=2×1+6=8,∴A(1,8),∵反比例函数经过点A(1,8),∴8=,∴k=8,∴反比例函数的解析式为y=.(2)由题意,点M,N的坐标为M(,n),N(,n),∵0<n<6,∴<0,∴S△BMN=×(||+||)×n=×(﹣+)×n=﹣(n﹣3)2+,∴n=3时,△BMN的面积最大.20、(1)y=﹣x2+2x+3;(2)DE+DF有最大值为;(3)①存在,P的坐标为(,)或(,);②<t<.【解题分析】
(1)设抛物线解析式为y=a(x+1)(x﹣3),根据系数的关系,即可解答(2)先求出当x=0时,C的坐标,设直线AC的解析式为y=px+q,把A,C的坐标代入即可求出AC的解析式,过D作DG垂直抛物线对称轴于点G,设D(x,﹣x2+2x+3),得出DE+DF=﹣x2+2x+3+(x-1)=﹣x2+(2+)x+3-,即可解答(3)①过点C作AC的垂线交抛物线于另一点P1,求出直线PC的解析式,再结合抛物线的解析式可求出P1,过点A作AC的垂线交抛物线于另一点P2,再利用A的坐标求出P2,即可解答②观察函数图象与△ACQ为锐角三角形时的情况,即可解答【题目详解】解:(1)设抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∴﹣2a=2,解得a=﹣1,∴抛物线解析式为y=﹣x2+2x+3;(2)当x=0时,y=﹣x2+2x+3=3,则C(0,3),设直线AC的解析式为y=px+q,把A(﹣1,0),C(0,3)代入得,解得,∴直线AC的解析式为y=3x+3,如答图1,过D作DG垂直抛物线对称轴于点G,设D(x,﹣x2+2x+3),∵DF∥AC,∴∠DFG=∠ACO,易知抛物线对称轴为x=1,∴DG=x-1,DF=(x-1),∴DE+DF=﹣x2+2x+3+(x-1)=﹣x2+(2+)x+3-,∴当x=,DE+DF有最大值为;答图1答图2(3)①存在;如答图2,过点C作AC的垂线交抛物线于另一点P1,∵直线AC的解析式为y=3x+3,∴直线PC的解析式可设为y=x+m,把C(0,3)代入得m=3,∴直线P1C的解析式为y=x+3,解方程组,解得或,则此时P1点坐标为(,);过点A作AC的垂线交抛物线于另一点P2,直线AP2的解析式可设为y=x+n,把A(﹣1,0)代入得n=,∴直线PC的解析式为y=,解方程组,解得或,则此时P2点坐标为(,),综上所述,符合条件的点P的坐标为(,)或(,);②<t<.【题目点拨】此题考查二次函数综合题,解题关键在于把已知点代入解析式求值和作辅助线.21、(1)①;②四边形是菱形,理由见解析;(2)四边形能是正方形,理由见解析,m+n=32.【解题分析】
(1)①先确定出点A,B坐标,再利用待定系数法即可得出结论;
②先确定出点D坐标,进而确定出点P坐标,进而求出PA,PC,即可得出结论;
(2)先确定出B(1,),D(1,),进而求出点P的坐标,再求出A,C坐标,最后用AC=BD,即可得出结论.【题目详解】(1)①如图1,,反比例函数为,当时,,,当时,,,,设直线的解析式为,,,直线的解析式为;②四边形是菱形,理由如下:如图2,由①知,,轴,,点是线段的中点,,当时,由得,,由得,,,,,,四边形为平行四边形,,四边形是菱形;(2)四边形能是正方形,理由:当四边形是正方形,记,的交点为,,当时,,,,,,,,,,.【题目点拨】此题是反比例函数综合题,主要考查了待定系数法,平行四边形的判定,菱形的判定和性质,正方形的性质,判断出四边形ABCD是平行四边形是解本题的关键.22、(1)y=;(2);(3)<x<1.【解题分析】
(1)先利用矩形的性质确定C点坐标(1,4),再确定A点坐标为(3,2),根据反比例函数图象上点的坐标特征得到k1=1,即反比例函数解析式为y=;(2)利用反比例函数解析式确定F点的坐标为(1,1),E点坐标为(,4),然后根据△OEF的面积=S矩形BCDO﹣S△ODE﹣S△OBF﹣S△CEF进行计算;(3)观察函数图象得到当<x<1时,一次函数图象都在反比例函数图象上方,即k2x+b>.【题目详解】(1)∵四边形DOBC是矩形,且点C的坐标为(1,4),∴OB=1,OD=4,∵点A为线段OC的中点,∴A点坐标为(3,2),∴k1=3×2=1,∴反比例函数解析式为y=;(2)把x=1代入y=得y=1,则F点的坐标为(1,1);把y=4代入y=得x=,则E点坐标为(,4),△OEF的面积=S矩形BCDO﹣S△ODE﹣S△OBF﹣S△CEF=4×1﹣×4×﹣×1×1﹣×(1﹣)×(4﹣1)=;(3)由图象得:不等式不等式k2x+b>的解集为<x<1.【题目点拨】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解即可.23、斜边和一条直角边分别相等的两个直角三角形全等;全等三角形的对应角相等;两点确定一条直线【解题分析】
利用“HL”判断Rt△OPM≌Rt△OPN,从而得到∠POM=∠PON.【题目详解】有画法得OM=ON,∠OMP=∠ONP=90°,则可判定Rt△OPM≌Rt△OPN,所以∠POM=∠PON,即射线OP为∠AOB的平分线.故答案为斜边和一条直角边分别相等的两个直角三角形全等;全等三角形的对应角相等;两点确定一条直线.【题目点拨】本题考查了作图−基本作图,解题关键在于熟练掌握基本作图作一条线段等于已知线段.24、(1)见解析(2)当AF=时,四边形BCEF是菱形.【解题分析】
(1)由AB=DE,∠A=∠D,AF=DC,根据SAS得△ABC≌DEF,即可得BC=EF,且BC∥EF,即可判定四边形BCEF是平行四边形.(2)由四边形BCEF是平行四边形,可得当BE⊥CF时,四边形BCEF是菱形,所以连接BE,交CF与点G,证得△ABC∽△BGC,由相似三角形的对应边成比例,即可求得AF的值.【题目详解】(1)证明:∵AF=DC,∴AF+FC=DC+FC,即AC=DF.∵在△ABC和△DEF中,AC=DF,∠A=∠D,AB=DE,∴△ABC≌DEF(SAS).∴BC=EF,∠ACB=∠DFE,∴BC∥EF.∴四边形BCEF是平行四边形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2021学年辽宁省沈阳市郊联体高一下学期期末考试地理试题
- 小学四年级多位数乘除法400题
- 学校爱国卫生建设工作计划
- 儿童蛀牙伤害大
- 命题作文“释放”写作指导及佳作
- 《白血病的规范化疗》课件
- 《加油站HSE管理》课件
- 《龙蟠长城模板》课件
- 汽车工程师的工作总结
- 化工行业销售业绩总结
- 2024年南京市第一医院分院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 邓州市龙理乡第一初级中学-2025年春节寒假跨学科主题实践作业模板【课件】
- 电力改造电力安装施工合同
- (新疆一模)2025届高三高考适应性检测分学科第一次模拟考试 生物试卷(含答案解析)
- 【大学课件】文物数字化技术及数字化文物系统初探
- 高一数学上学期期末模拟试卷03-【中职专用】2024-2025学年高一数学上学期(高教版2023基础模块)(解析版)
- 2024年中央经济工作会议精神解读
- 2023-2024学年广东省深圳市福田区八年级(上)期末历史试卷
- 公司安全事故隐患内部举报、报告奖励制度
- 历史常识单选题100道及答案解析
- 2024年陕西榆林市神木市公共服务辅助人员招聘775人历年高频难、易错点500题模拟试题附带答案详解
评论
0/150
提交评论