版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题01解一元二次方程(30题5种题型)一、一元一次方程1.(2022秋·北京朝阳·九年级和平街第一中学校考期中)证明:关于x的方程,不论m取何值,该方程都是一元二次方程.2.(2022秋·江苏盐城·九年级校联考期中)为美化市容,某广场要在人行雨道上用10×20的灰、白两色的广场砖铺设图案,设计人员画出的一些备选图案如图所示.[观察思考]图1灰砖有1块,白砖有8块;图2灰砖有4块,白砖有12块;以此类推.(1)[规律总结]图4灰砖有______块,白砖有______块;图n灰砖有______块时,白砖有______块;(2)[问题解决]是否存在白砖数恰好比灰砖数少1的情形,请通过计算说明你的理由.3.(2019秋·重庆江津·九年级校联考期末)先化简,再求值:,其中,a是方程x2﹣3x+1=0的根.二、一元二次方程的解法4.(2021秋·新疆乌鲁木齐·九年级乌鲁木齐市实验学校校考期中)用指定的方法解下列方程:(1);(直接开平方法)(2);(配方法)(3);(公式法)(4).(因式分解法)5.(2022秋·福建龙岩·九年级龙岩二中校考期中)已知关于x的方程(m﹣)﹣x=3,试问:(1)m为何值时,该方程是关于x的一元一次方程?(2)m为何值时,该方程是关于x的一元二次方程?6.(2022秋·河北邯郸·九年级统考期中)(1)a,b两个实数在数轴上的对应点如图所示.用“<”或“>”填空:a_______b,ab_______0;(2)在初中阶段我们已经学习了一元二次方程的三种解法,他们分别是配方法、公式法和因式分解法,请从下列一元二次方程中任选两个,并解这两个方程.①x2+2x−1=0;②x2−3x=0;③x2−4x=4;④x2−4=0.7.(2022秋·福建泉州·九年级晋江市第一中学校考期中)如果一元二次方程的两根相差1,那么该方程称为“差1方程”.例如x2+x=0是“差1方程”.(1)判断下列方程是不是“差1方程”,并说明理由;①x2﹣5x﹣6=0;②x2﹣x+1=0;(2)已知关于x的方程x2﹣(m﹣1)x﹣m=0(m是常数)是“差1方程”,求m的值;(3)若关于x的方程ax2+bx+1=0(a,b是常数,a>0)是“差1方程”,设t=10a﹣b2,求t的最大值.8.(2023秋·河南平顶山·九年级统考期末)已知关于,的方程组与的解相同.(1)求,的值;(2)若一个三角形的一条边的长为,另外两条边的长是关于的方程的解.试判断该三角形的形状,并说明理由.9.(2021秋·新疆乌鲁木齐·九年级校考期中)已知:关于x的一元二次方程(1)已知x=2是方程的一个根,求m的值;(2)以这个方程的两个实数根作为△ABC中AB、AC(AB<AC)的边长,当BC=时,△ABC是直角三角形,求此时m的值.10.(2022秋·江苏·九年级期中)定义:我们把关于的一元二次方程与(,)称为一对“友好方程”.如的“友好方程”是.(1)写出一元二次方程的“友好方程”_______.(2)已知一元二次方程的两根为,,它的“友好方程”的两根、________.根据以上结论,猜想的两根、与其“友好方程”的两根、之间存在的一种特殊关系为________,证明你的结论.(3)已知关于的方程的两根是,.请利用(2)中的结论,求出关于的方程的两根.11.(2022秋·江西赣州·九年级统考期中)小敏与小霞两位同学解方程的过程如下框:小敏:两边同除以,得,则.小霞:移项,得,提取公因式,得.则或,解得,.你认为他们的解法是否正确?若正确请在框内打“√”;若错误请在框内打“×”,并写出你的解答过程.12.(2021秋·湖南·九年级校联考期中)阅读下列问题与提示后,将解方程的过程补充完整,求出x的值.问题:解方程(提示:可以用换元法解方程),解:设,则有,原方程可化为:,续解:13.(2022秋·湖南永州·九年级校考期中)阅读下列材料,解答问题..解:设,则,原方程可化为,,即.或,解得.请利用上述方法解方程:.14.(2023秋·重庆渝中·九年级统考期末)阅读材料,解答问题.解方程:.解:把视为一个整体,设,则原方程可化为.解得,.或.,.以上方法就叫换元法,达到简化或降次的目的,体现了转化的思想.请仿照材料解下列方程:(1);(2).三、一元二次方程根的判别式15.(2023秋·湖南益阳·九年级校联考期末)已知关于x的方程x2﹣(m+2)x+(2m﹣1)=0.(1)求证:方程恒有两个不相等的实数根.(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的面积.16.(2022秋·河北保定·九年级统考期末)已知关于的一元二次方程.(1)求证:方程总有两个实数根;(2)若,且此方程的两个实数根的差为3,求的值.17.(2022·北京西城·九年级北师大实验中学校考期末)已知关于的一元二次方程.(1)求证:此方程总有两个实数根;(2)若此方程恰有一个根小于0,求的取值范围.18.(2023秋·河南商丘·九年级校联考期末)已知T=(1)化简T;(2)若关于的方程有两个相等的实数根,求T的值.19.(2022秋·河南周口·九年级统考期末)因式定理:对于多项式,若,则是的一个因式,并且可以通过添减单项式从中分离出来.已知.(1)填空:当时,,所以是的一个因式.于是.则________________;(2)已知关于x的方程的三个根是一个等腰三角形的三边长,求实数k的值.四、一元二次根与系数的关系20.(2022秋·河南南阳·九年级统考期末)阅读材料:材料1:若关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根为x1,x2,则x1+x2=,x1x2=材料2:已知一元二次方程x2-x-1=0的两个实数根分别为m,n,求m2n+mn2的值.解:∵一元二次方程x2-x-1=0的两个实数根分别为m,n,∴m+n=1,mn=-1,则m2n+mn2=mn(m+n)=-1×1=-1根据上述材料,结合你所学的知识,完成下列问题:(1)材料理解:一元二次方程2x2-3x-1=0的两个根为x1,x2,则x1+x2=;x1x2=.(2)类比应用:已知一元二次方程2x2-3x-1=0的两根分别为m、n,求的值.(3)思维拓展:已知实数s、t满足2s2-3s-1=0,2t2-3t-1=0,且s≠t,求的值.21.(2022秋·广东茂名·九年级茂名市第一中学校考期中)阅读材料:材料1:若一元二次方程的两个根为,则,.材料2:已知实数,满足,,且,求的值.解:由题知,是方程的两个不相等的实数根,根据材料1得,,所以根据上述材料解决以下问题:(1)材料理解:一元二次方程的两个根为,,则___________,____________.(2)类比探究:已知实数,满足,,且,求的值.(3)思维拓展:已知实数、分别满足,,且.求的值.22.(2022秋·湖北襄阳·九年级统考期末)已知关于x的方程:x2+(m﹣2)x﹣m=0.(1)求证:无论m取何实数,方程总有两个不相等的实数根.(2)设非0实数m,n是方程的两根,试求m﹣n的值.23.(2022秋·四川绵阳·九年级校考期中)已知关于x的一元二次方程有两个不相等的实数根.(1)求k的取值范围;(2)若方程的两个不相等实数根是a,b,求的值.24.(2022秋·广东汕头·九年级统考期末)已知关于的一元二次方程.(1)求证:无论取何值,此方程总有两个不相等的实数根;(2)若方程有两个实数根,,且,求的值.25.(2022秋·福建泉州·九年级福建省惠安第一中学校联考期中)已知关于x的一元二次方程x2-(2m-1)x+m2=0有实数根.(1)求m的取值范围;(2)设此方程的两个根分别为x1,x2,若x1+x2=2-x1x2,求m的值.26.(2022秋·湖北鄂州·九年级统考期末)设,是关于x的一元二次方程的两个实数根.(1)求m的取值范围;(2)若,求m的值.五、与一元二次方程有关的存在性问题27.(2022秋·江苏苏州·九年级苏州工业园区星湾学校校考期中)已知,是一元二次方程的两个实数根.(1)求k的取值范围;(2)是否存在实数k,使得等式成立?如果存在,请求出k的值,如果不存在,请说明理由.28.(2022秋·湖北荆州·九年级统考期末)已知关于x的一元二次方程有,两实数根.(1)若,求及的值;(2)是否存在实数,满足?若存在,求出求实数的值;若不存在,请说明理由.29.(2023秋·湖南衡阳·九年级校考期末)关于的方程有两个不相等的实数根.(1)求的取值范围.(2)是否存在实数,使方程的两个实数根的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 脾胃虚弱动画冬病夏治
- 大叔爷爷课件教学课件
- 2024年分子筛项目投资申请报告代可行性研究报告
- 物联网毕业设计论文
- 龙虾的课件教学课件
- 牙体牙髓病常用药物
- 2.1.2碳酸钠和碳酸氢钠 课件高一上学期化学人教版(2019)必修第一册
- 糖尿病胰岛素注射治疗
- 新公司企业规划
- 合唱团说课稿
- GB/T 17644-1998纺织纤维白度色度试验方法
- 第五单元写作《如何突出中心》课件 【新教材备课精研】部编版语文七年级上册
- GB 24500-2020工业锅炉能效限定值及能效等级
- GB 19173-2003桑树种子和苗木
- 精细化工概论-05洗涤剂
- 报联商有效沟通课件
- 速卖通介绍课件
- 脑梗死PPT教学讲解课件
- 脑卒中患者语言康复训练课件
- 古代茶具的演变课件
- 55三相异步电动机的铭牌与型号电机与变压器劳动第五版课件
评论
0/150
提交评论