版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年山东德州市武城县数学八上期末学业质量监测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,阴影部分搪住的点的坐标可能是()A.(6,2) B.(-5,3)C.(-3,-5) D.(4,-3)2.如图,在Rt△ABC中,∠BCA=90°,∠A=30°,CD⊥AB,垂足为点D,则AD与BD之比为()A.2∶1 B.3∶1 C.4∶1 D.5∶13.如果一个多边形的每个内角的度数都是108°,那么这个多边形的边数是()A.3 B.4 C.5 D.64.如下图所示,在边长为的正方形中,剪去一个边长为的小正方形(),将余下部分拼成一个梯形,根据两个图形阴影部分面积的关系,可以得到一个关于、的恒等式为()A. B.C. D.5.已知直线,将一块含角的直角三角板()按如图所示的位置摆放,若,则的度数为()A. B. C. D.6.一次函数的图象与轴的交点坐标是()A.(-2,0) B.(,0) C.(0,2) D.(0,1)7.在△ABC中,若∠A=95°,∠B=40°,则∠C的度数为()A.35° B.40° C.45° D.50°8.如图,△ABC与△A′B′C′关于直线l对称,且∠A=78°,∠C′=48°,则∠B的度数为()A.48° B.54° C.74° D.78°9.将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板的一条直角边在同一条直线上,则图中∠的度数是()A.75° B.65° C.55° D.45°10.如图所示,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下四个结论:①△ACD≌△BCE;②AD=BE;③∠AOB=60°;④△CPQ是等边三角形.其中正确的是()A.①②③④ B.②③④ C.①③④ D.①②③二、填空题(每小题3分,共24分)11.若点P1(a+3,4)和P2(-2,b-1)关于x轴对称,则a+b=___.12.如图,在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,则BD的长为.13.已知等腰三角形一腰上的高与另一腰的夹角为50°,则等腰三角形的顶角度数为_________.14.某公司招聘职员,公司对应聘者进行了面试和笔试(满分均为100分),规定笔试成绩占60%,面试成绩占40%,应聘者张华的笔试成绩和面试成绩分别为95分和90分,她的最终得分是_____分.15.点关于轴对称的点的坐标为______.16.若a-b=3,ab=1,则a2+b2=______.17.如图所示,△ABC中,∠C=90°,AD平分∠BAC,AB=6,CD=2,则△ABD的面积是_______.18.如图,△ABC中,∠C=90°,∠ABC=30°,BC=1,点D是边BC上一动点,以AD为边作等边△ADE,使点E在∠C的内部,连接BE.下列结论:①AC=1;②EB=ED;③当AD平分∠BAC时,△BDE是等边三角形;④动点D从点C运动到点B的过程中,点E的运动路径长为1.其中正确的是__________.(把你认为正确结论的序号都填上)三、解答题(共66分)19.(10分)已知直线AB:y=kx+b经过点B(1,4)、A(5,0)两点,且与直线y=2x-4交于点C.(1)求直线AB的解析式并求出点C的坐标;(2)求出直线y=kx+b、直线y=2x-4及与y轴所围成的三角形面积;(3)现有一点P在直线AB上,过点P作PQ∥y轴交直线y=2x-4于点Q,若线段PQ的长为3,求点P的坐标.20.(6分)(1)画出△ABC关于y轴对称的图形△A1B1C1;(2)在x轴上找出点P,使得点P到点A、点B的距离之和最短(保留作图痕迹)21.(6分)如图,网格中的与为轴对称图形,且顶点都在格点上.(1)利用网格,作出与的对称轴;(2)结合图形,在对称轴上画出一点,使得最小;(3)如果每个小正方形的边长为1,请直接写出的面积.22.(8分)证明:如果两个三角形有两个角及它们的夹边的高分别相等,那么这两个三角形全等.23.(8分)先仔细阅读材料,再尝试解决问题:我们在求代数式的最大或最小值时,通过利用公式对式子作如下变形:,因为,所以,因此有最小值2,所以,当时,,的最小值为2.同理,可以求出的最大值为7.通过上面阅读,解决下列问题:(1)填空:代数式的最小值为______________;代数式的最大值为______________;(2)求代数式的最大或最小值,并写出对应的的取值;(3)求代数式的最大或最小值,并写出对应的、的值.24.(8分)如图,已知△ABC.(1)求作点P,使点P到B、C两点的距离相等,且点P到∠BAC两边的距离也相等(尺规作图,保留作图痕迹,不写作法).(2)在(1)中,连接PB、PC,若∠BAC=40°,求∠BPC的度数.25.(10分)如图,在中,点是上一点,分别过点、两点作于点,于点,点是边上一点,连接,且.求证:.26.(10分)尺规作图及探究:已知:线段AB=a.(1)完成尺规作图:点P在线段AB所在直线上方,PA=PB,且点P到AB的距离等于,连接PA,PB,在线段AB上找到一点Q使得QB=PB,连接PQ,并直接回答∠PQB的度数;(2)若将(1)中的条件“点P到AB的距离等于”替换为“PB取得最大值”,其余所有条件都不变,此时点P的位置记为,点Q的位置记为,连接,并直接回答∠的度数.
参考答案一、选择题(每小题3分,共30分)1、D【分析】根据坐标系可得阴影部分遮住的点在第四象限,再确定答案即可.【详解】阴影部分遮住的点在第四象限,
A、(6,2)在第一象限,故此选项错误;
B、(-5,3)在第二象限,故此选项错误;
C、(-3,-5)在第三象限,故此选项错误;
D、(4,-3)在第四象限,故此选项正确;
故选:D.【点睛】本题主要考查了点的坐标,关键是掌握四个象限内点的坐标符号.2、B【分析】根据含30度角的直角三角形的性质得到BD=BC,BC=AB,得到答案.【详解】解:∵∠ACB=90°,CD⊥AB,∴∠BCD=∠A=30°,∴BD=BC,∴BC=AB,BD=BC=ABAD=AB-BD=AB-AB=AB,∴AD:BD=3∶1,故选B.【点睛】本题考查的是直角三角形的性质,在直角三角形中,30°角所对的直角边等于斜边的一半.3、C【分析】首先计算出多边形的外角的度数,再根据外角和÷外角度数=边数可得答案.【详解】解:∵多边形的每个内角都是108°,∴每个外角是180°﹣108°=72°,∴这个多边形的边数是360°÷72°=5,∴这个多边形是五边形,故选C.【点睛】此题主要考查了多边形的外角与内角,关键是掌握多边形的外角与它相邻的内角互补.4、C【分析】可分别在正方形和梯形中表示出阴影部分的面积,两式联立即可得到关于a、b的恒等式.【详解】解:正方形中,S阴影=a2-b2;
梯形中,S阴影=(2a+2b)(a-b)=(a+b)(a-b);
故所得恒等式为:a2-b2=(a+b)(a-b).
故选:C.【点睛】此题主要考查的是平方差公式的几何表示,运用不同方法表示阴影部分面积是解题的关键.5、A【分析】给图中各角标上序号,由同位角相等和邻补角的性质可求出∠5的度数,再结合三角板的性质以及外角的性质可得出∠4,最后利用对顶角相等得出∠1的度数.【详解】解:∵,∴∠2=∠3=75°,∴∠5=180°-75°=105°,又∵直角三角板中,∠B=45°,∠5=∠B+∠4,∠4=105°-45°=60°,∴∠1=60°.故选A.【点睛】本题考查了平行线的性质,三角形的外角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.6、D【分析】令x=0,代入函数解析式,求得y的值,即可得到答案.【详解】令x=0,代入得:,∴一次函数的图象与轴的交点坐标是:(0,1).故选D.【点睛】本题主要考查一次函数图象与y轴的交点坐标,掌握直线与y轴的交点坐标的特征,是解题的关键.7、C【详解】∵三角形的内角和是180°,又∠A=95°,∠B=40°,∴∠C=180°﹣∠A﹣∠B=180°﹣95°﹣40°=45°,故选C.8、B【解析】由对称得到∠C=∠C′=48°,由三角形内角和定理得∠B=54°,由轴对称的性质知∠B=∠B′=54°.解:∵在△ABC中,∠A=78°,∠C=∠C′=48°,∴∠B=180°﹣78°﹣48°=54°∵△ABC与△A′B′C′关于直线l对称,∴∠B=∠B′=54°.故选B.9、A【分析】根据三角形的内角和定理、对顶角相等和三角形外角的性质即可得出结论.【详解】解:如下图所示∠1=180°-90°-45°=45°∴∠2=∠1=45°∴∠=∠2+30°=75°故选A.【点睛】此题考查的是三角形的内角和定理、三角形外角的性质和对顶角的性质,掌握三角形的内角和定理、三角形外角的性质和对顶角相等是解决此题的关键.10、A【分析】由已知条件运用等边三角形的性质得到三角形全等,进而得到更多结论,然后运用排除法,对各个结论进行验证从而确定最后的答案.【详解】∵△ABC和△CDE是正三角形,
∴AC=BC,CD=CE,∠ACB=∠DCE=60°,
∵∠ACD=∠ACB+∠BCD,∠BCE=∠DCE+∠BCD,
∴∠ACD=∠BCE,
∴△ADC≌△BEC(SAS),故①正确,
∴AD=BE,故②正确;
∵△ADC≌△BEC,
∴∠ADC=∠BEC,
∴∠AOB=∠DAE+∠AEO=∠DAE+∠ADC=∠DCE=60°,故③正确;
∵CD=CE,∠DCP=∠ECQ=60°,∠ADC=∠BEC,
∴△CDP≌△CEQ(ASA).
∴CP=CQ,
∴∠CPQ=∠CQP=60°,
∴△CPQ是等边三角形,故④正确;
故选A.【点睛】考查等边三角形的性质及全等三角形的判定等知识点;得到三角形全等是正确解答本题的关键.二、填空题(每小题3分,共24分)11、-2【分析】根据关于x轴对称的点的横坐标相等,纵坐标互为相反数,关于y轴对称的点的纵坐标相等,横坐标互为相反数,得出a、b的值即可得答案.【详解】解:由题意,得
a+3=-2,b-1=-1.
解得a=-5,b=-3,所以a+b=(-5)+(-3)=-2
故答案为:-2.【点睛】本题考查关于x轴对称的点的坐标,熟记对称特征:关于x轴对称的点的横坐标相等,纵坐标互为相反数,关于y轴对称的点的纵坐标相等,横坐标互为相反数是解题关键.12、.【解析】作AD′⊥AD,AD′=AD,连接CD′,DD′,如图:∵∠BAC+∠CAD=∠DAD′+∠CAD,即∠BAD=∠CAD′,在△BAD与△CAD′中,,∴△BAD≌△CAD′(SAS),∴BD=CD′.∠DAD′=90°由勾股定理得DD′=,∠D′DA+∠ADC=90°由勾股定理得CD′=∴BD=CD′=,故答案为.13、40°或140°【分析】根据题意,对等腰三角形分为锐角等腰三角形和钝角等腰三角形进行解答.【详解】解:①如图1,若该等腰三角形为锐角三角形,由题意可知:在△ABC中,AB=AC,BD为AC边上的高,且∠ABD=50°,∴∠A=90°-50°=40°,②如图2,若该等腰三角形为钝角三角形,由题意可知:在△ABC中,AB=AC,BD为AC边上的高,且∠ABD=50°,∴∠BAD=90°-50°=40°,∴∠BAC=180°-40°=140°,综上所述:等腰三角形的顶角度数为40°或140°,故答案为:40°或140°.【点睛】本题考查了等腰三角形的分类讨论问题,以及三角形高的做法,解题的关键是对等腰三角形进行分类,利用数形结合思想进行解答.14、1【分析】利用加权平均数的计算公式,进行计算即可.【详解】95×60%+90×40%=1(分)故答案为:1.【点睛】本题主要考查加权平均数的实际应用,掌握加权平均数的计算公式,是解题的关键.15、(5,3)【分析】根据关于x轴对称的点的特点:横坐标相同,纵坐标互为相反数即可得出答案.【详解】点关于x轴对称的点的坐标为故答案为:.【点睛】本题主要考查关于x轴对称的点的特点,掌握关于x轴对称的点的特点是解题的关键.16、1.【解析】根据题意,把a-b=3两边同时平方可得,a2-2ab+b2=9,结合题意,将a2+b2看成整体,求解即可.【详解】∵a-b=3,ab=1,∴(a-b)2=a2-2ab+b2=9,∴a2+b2=9+2ab=9+2=1.故答案为1.【点睛】本题考查对完全平方公式的变形应用能力.17、1【分析】由角平分线上的点到角的两边距离相等性质解题.【详解】平分点到AB的距离等于CD长度2,所以故答案为:1.【点睛】本题考查角平分线的性质、三角形的面积公式等知识,是常见基础考点,掌握相关知识是解题关键.18、②③④【分析】作EF⊥AB垂足为F,连接CF,可证△EAF≌△DAC,推出点E在AB的垂直平分线上,根据三线合一可证为等腰三角形,即可得到EB=ED,由AD平分∠BAC计算∠CAD=∠EAB=∠EBA=30°,从而证得△BDE是等边三角形,在点D从点A移动至点C的过程中,点E移动的路线和点D运动的路线相等,由此即可解决问题.【详解】解:∵△ABC中,∠C=90°,∠ABC=30°,BC=1,∴,故①错误;如图,作EF⊥AB垂足为F,连接CF,∵∠ACB=90°,∠ABC=30°,∴∠BAC=60°,∵△ADE是等边三角形,∴AE=AD=ED,∠EAD=60°,∴∠EAD=∠BAC,∴∠EAF=∠DAC,在△EAF和△DAC中,,∴△EAF≌△DAC,∴AF=AC,EF=CD,∵,∴,∴F为AB的中点,∴EF为的中线,又∵,∴,∵,∴,故②正确;∵AD平分∠BAC,∴,∴,∵,∴,∵,∴,又∵,∴是等边三角形,故③正确;∵,,∴点E在AB的垂直平分线上,∴在点D从点C移动至点B的过程中,点E移动的路线和点D运动的路线相等,∴在点D从点C移动至点B的过程中,点E移动的路线为1,故④正确;故答案为:②③④.【点睛】本题考查直角三角形性质,等边三角形性质,利用这些知识证明三角形全等为关键,掌握直角三角形和等边三角形的性质为解题关键.三、解答题(共66分)19、(1)y=-x+5;点C(3,2);(2)S=;(3)P点坐标为(2,3)或(4,1).【分析】(1)根据待定系数法求出直线AB解析式,再联立两函数解出C点坐标;(2)依次求出y=-x+5和y=2x-4与y轴交点坐标,根据三角形的面积公式即可求解;(3)设P点(m,-m+5)Q点坐标为(m,2m-4),根据线段PQ的长为3,分情况即可求解.【详解】(1)∵直线y=kx+b经过点A(5,0),B(1,4),∴解得∴直线AB的解析式为:y=-x+5;∵若直线y=2x-4与直线AB相交于点C,∴解得∴点C(3,2);(2)∵y=-x+5与y轴交点坐标为(0,5),y=2x-4与y轴交点坐标为(0,-4),C点坐标为(3,2)∴S=(3)设P点(m,-m+5)Q点坐标为(m,2m-4)则-m+5-(2m-4)=3或者2m-4-(-m+5)=3解得m=2或m=4∴P点坐标为(2,3)或(4,1).【点睛】此题主要考查一次函数图像与几何综合,解题的关键是熟知一次函数的图像与性质、待定系数法的应用.20、见解析【分析】(1)分别作出点A、B、C关于y轴对称的点,然后顺次连接;(2)作点B关于x轴的对称点B',然后连接AB',与x轴的交点即为点P.【详解】(1)如图所示:(2)如图所示:.21、(1)见解析;(2)见解析;(1)1【分析】(1)对称轴应为两个三角形对应点连线的中线,故连接CF、DE,找到线段CF、DE的中点,再连接起来,即为所求直线;(2)连接CD与的交点即为点P的位置,因为点A与点D关于对称,根据两点之间,线段最短可得:,即P点即为所求;(1)ABC的面积可由一个矩形,减去三个直角三角形的面积所得.【详解】解:(1)对称轴应为两个三角形对应点连线的中线,故连接CF、DE,找到线段CF、DE的中点,再连接起来,即为所求直线.(2)如图所示,点P即为所求;连接CD与的交点即为点P的位置,因为点A与点D关于对称,根据两点之间,线段最短可得:,即P点即为所求;(1)ABC的面积可由一个矩形,减去三个直角三角形的面积所得,,故ABC的面积为1.【点睛】本题主要考察了对称轴的画法、求两点到第三点距离之和最短的情况、用割补法求三角形面积,解题的关键在于结合图形中对应点找出对称轴,并以此对称轴求得距离最短的情况.22、详见解析【分析】先利用几何语言写出已知、求证,然后证明这两个三角形中有条边对应相等,从而判断这两个三角形全等.【详解】已知:如图,在△ABC和△A′B′C′中,∠B=∠B′,∠C=∠C′,AD、A′D′分别是BC,B′C′边上的高,AD=A′D′.求证:△ABC≌△A′B′C′.证明:∵AD⊥BC,A′D′⊥B′C′,∴∠ADB=∠A′D′B′=90°.∵∠B=∠B′,AD=A′D′,∴△ABD≌△A′B′D′(AAS),∴AB=A′B′,∵∠B=∠B′,∠C=∠C′∴△ABC≌△A′B′C′(AAS),即如果两个三角形有两个角及它们的夹边的高分别相等,那么这两个三角形全等.【点睛】本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.23、(2)2,;(2),最小值;(2)当,,时,有最小值-2.【分析】(2)依照阅读材料,把原式写成完全平方公式加一个常数的形式,然后根据完全平方公式前系数正负得出答案;(2)先讨论取得最大值,因为在分母上,所以取得最小值,再根据配方法求解即可;(2)同样配方成完全平方公式加上一个常数的形式.【详解】解:(2),因为,所以,因此有最小值2,所以的最小值为2;,因为,所以,所以有最大值,所以的最大值为;故答案为:2,;(2)∵,因为,所以,当时,,因此有最小值2,即的最小值为2.所以有最大值为;(2),所以当时,,所以当,时,有最小值-2.【点睛】本题是阅读理解题,主要考查了完全平方式、配方的应用和代数式偶次方的非负性等知识,正确理解题意、熟练掌握配方的方法是解题的关键.24、(1)答案见解析;(2)∠BPC的度数为140°.【分析】(1)根据
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 护理工作个人总结简短
- 青年志愿者活动主持词(5篇)
- 科研指导工作计划表
- 2023年济南市康复大学招聘教辅人员和辅导员招聘笔试真题
- 2024年井口及采油树专用件合作协议书
- 医疗保健数据管理协议
- 2024年微循环测试系统合作协议书
- 三年级数学计算题专项练习汇编及答案集锦
- 合同范本在哪里可以
- 2024年便携式振动分析仪项目合作计划书
- 祛淤通脉三圣药川芎、血竭、地龙
- 国家开放大学电大本科《理工英语4》期末题库及答案(试卷号:1388)
- 消防安全教育培训记录表
- 34化粪池安全风险告知卡
- 初中地理课程的教学计划与实施
- GB/T 27700.1-2023有质量评定的声表面波滤波器第1部分:总规范
- 猜歌名教学讲解课件
- 性传播疾病-课件
- 2022年海淀初中入学白皮书
- 儿童牙外伤-年轻恒牙外伤(儿童口腔医学课件)
- 外研社新标准小学英语(一起点)单词表(带音标)(全)
评论
0/150
提交评论