版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年内蒙古自治区通辽市开鲁县数学八上期末检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.已知:将直线沿着轴向下平移2个单位长度后得到直线,则下列关于直线的说法正确的是()A.经过第一、二、四象限 B.与轴交于C.与轴交于 D.随的增大而减小2.点(2,-3)关于原点对称的点的坐标是()A.(-2,3) B.(2,3) C.(-3,-2) D.(2,-3)3.一个三角形的两边长为3和9,第三边长为偶数,则第三边长为()A.6或8 B.8或10 C.8 D.104.如图,∠AOB=10°,点P是∠AOB内的定点,且OP=1.若点M、N分别是射线OA、OB上异于点O的动点,则△PMN周长的最小值是()A.12 B.9 C.6 D.15.已知直线y=mx-4经过P(-2,-8),则m的值为()A.1 B.-1 C.-2 D.26.如图,等腰三角形ABC底边BC的长为4cm,面积为12cm2,腰AB的垂直平分线EF交AB于点E,交AC于点F,若D为BC边上的中点,M为线段EF上一点,则△BDM的周长最小值为()A.5cm B.6cm C.8cm D.10cm7.如图,将甲图中的阴影部分无重叠、无缝隙得拼成乙图,根据两个图形中阴影部面积关系得到的等式是()A.a2+b2=(a+b)(a-b) B.a2+2ab+b2=(a+b)2C.a2-2ab+b2=(a-b)2 D.(a+b)2-(a-b)2=4ab8.如图,已知点,,点是轴上一动点,点是轴上一动点,要使四边形的周长最小,的值为()A.3.5 B.4 C.7 D.2.59.如图,△ABO关于x轴对称,若点A的坐标为(a,b),则点B的坐标为()A.(b,a) B.(﹣a,b) C.(a,﹣b) D.(﹣a,﹣b)10.袋中装有3个绿球和4个红球,它们除颜色外,其余均相同。从袋中摸出4个球,下列属于必然事件的是()A.摸出的4个球其中一个是绿球 B.摸出的4个球其中一个是红球C.摸出的4个球有一个绿球和一个红球 D.摸出的4个球中没有红球二、填空题(每小题3分,共24分)11.如图,D、E为△ABC两边AB、AC的中点,将△ABC沿线段DE折叠,使点A落在点F处,若∠B=55°,则∠BDF=_______°.12.人体内某种细胞可近似地看作球体,它的直径为0.000000156m,将0.000000156用科学记数法表示为.13.如图,中,DE垂直平分BC交BC于点D,交AB于点E,,,则______.14.如图,在中,,若,则___度(用含的代数式表示).15.已知等腰三角形的一个内角是80°,则它的底角是°.16.如图AB∥CD,AB与DE交于点F,∠B=40°,∠D=70°,则∠E=______.17.已知,,则__________18.一次函数,若随的增大而减小,则点在第______象限.三、解答题(共66分)19.(10分)如图,已知线段,求作,使(使用直尺和圆规,并保留作图痕迹).20.(6分)我国古代数学著作《增删算法统宗》记载“官兵分布”问题:“一千官军一千布,一官四疋无零数,四军才分布一疋,请问官军多少数.”其大意为:今有1000官兵分1000匹布,1官分4匹,4兵分1匹.问官和兵各几人?21.(6分)已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求的值.22.(8分)我们学过的分解因式的方法有提取公因式法、公式法及十字相乘法,但有很多的多项式只用上述方法就无法分解,如,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了.过程为:;这种分解因式的方法叫分组分解法.利用这种方法解决下列问题:(1)分解因式:(2)三边,,满足,判断的形状.23.(8分)计算及解方程组:(1);(2);(3)解方程组:.24.(8分)如图1,在平面直角坐标系中,已知点,点,为线段上一点,且满足.(1)求直线的解析式及点的坐标;(2)如图2,为线段上一动点,连接,与交于点,试探索是否为定值?若是,求出该值;若不是,请说明理由;(3)点为坐标轴上一点,请直接写出满足为等腰三角形的所有点的坐标.25.(10分)如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF(1)求证:△ABE≌△CBF;(2)若∠CAE=25°,求∠ACF的度数.26.(10分)已知P点坐标为(a+1,2a-3).(1)点P在x轴上,则a=;(2)点P在y轴上,则a=;(3)点P在第四象限内,则a的取值范围是;(4)点P一定不在象限.
参考答案一、选择题(每小题3分,共30分)1、C【分析】根据直线平移的规律得到平移前的直线解析式,再根据一次函数的性质依次判断选项即可得到答案.【详解】∵直线沿着轴向下平移2个单位长度后得到直线,∴原直线解析式为:+2=x+1,∴函数图象经过第一、二、三象限,故A错误,当y=0时,解得x=-1,图象与x轴交点坐标为(-1,0),故B错误;当x=0时,得y=1,图象与y轴交点坐标为(0,1),故C正确;∵k=1>0,∴y随x的增大而增大,故D错误,故选:C.【点睛】此题考查一次函数的性质,函数图象平移的规律,根据图象的平移规律得到函数的解析式是解题的关键.2、A【分析】根据关于原点对称点的坐标特点:两个点关于原点对称时,它们的坐标符号相反可得答案.【详解】解:在平面直角坐标系中,关于原点对称的两点横坐标和纵坐标均满足互为相反数,点(2,-3)关于原点对称的点的坐标是(-2,3).故选A.【点睛】本题考查了关于原点对称点的坐标,熟练掌握坐标特征是解题的关键.3、B【分析】根据三角形中两边之和大于第三边,两边之差小于第三边进行解答.【详解】解:设第三边长为x,有,解得,即;又因为第三边长为偶数,则第三边长为8或10;故选:B.【点睛】本题主要考查了三角形中的三边关系,掌握:两边之和大于第三边,两边之差小于第三边是解题的关键.4、D【分析】根据题意,作点P关于OA、OB的对称点E、D,连接DE,与OA相交于点M,与OB相交于点N,则此时△PMN周长的最小值是线段DE的长度,连接OD、OE,由∠AOB=10°,得到∠DOE=60°,由垂直平分线的性质,得到OD=OE=OP=1,则△ODE是等边三角形,即可得到DE的长度.【详解】解:如图:作点P关于OA、OB的对称点E、D,连接DE,与OA相交于点M,与OB相交于点N,则此时△PMN周长的最小值是线段DE的长度,连接OD、OE,由垂直平分线的性质,得DN=PN,MP=ME,OD=OE=OP=1,∴△PMN周长的最小值是:PN+PM+MN=DN+MN+ME=DE,由垂直平分线的性质,得∠DON=∠PON,∠POM=∠EOM,∴∠DOE=∠DOP+∠EOP=2(∠PON+∠POM)=2∠MON=60°,∴△ODE是等边三角形,∴DE=OD=OE=1,∴△PMN周长的最小值是:PN+PM+MN=DE=1;故选:D.【点睛】本题考查了等边三角形的判定,垂直平分线的性质,轴对称的性质,以及最短路径问题,解题的关键是正确作出辅助线,确定点M、N的位置,使得△PMN周长的最小.5、D【分析】将点P代入直线y=mx-4中建立一个关于m的方程,解方程即可.【详解】∵直线y=mx-4经过P(-2,-8)∴解得故选:D.【点睛】本题主要考查待定系数法,掌握待定系数法是解题的关键.6、C【分析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论.【详解】如图,连接AD.∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×4×AD=12,解得:AD=6(cm).∵EF是线段AB的垂直平分线,∴点B关于直线EF的对称点为点A,∴AD的长为BM+MD的最小值,∴△BDM的周长最短=(BM+MD)+BD=AD+BC=6+×4=6+2=8(cm).故选C.【点睛】本题考查的是轴对称﹣最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.7、C【分析】由图甲可知阴影部分的面积=大正方形的面积-两个长方形的面积+两个长方形重合部分的面积,由图乙可知阴影部分是边长为a-b的正方形,从而可知其面积为(a-b)2,从而得出结论.【详解】解:由图甲可知:阴影部分的面积=a2-2ab+b2由图乙可知:阴影部分的面积=(a-b)2∴a2-2ab+b2=(a-b)2故选C.【点睛】此题考查的是完全平方公式的几何意义,掌握阴影部分面积的两种求法是解决此题的关键.8、A【解析】如图(见解析),先根据垂直平分线的性质、两点之间线段最短公理确认使四边形的周长最小时,点P、Q的位置,再利用一次函数的性质求解即可.【详解】如图,作点A关于y轴的对称点,作点B关于x轴的对称点,连接,其中交x轴于点C、交y轴于点D则y轴垂直平分,x轴垂直平分四边形的周长为要使周长最小,只需最小由两点之间线段最短公理得:当点P与点C重合、点Q与点D重合时,最小,最小值为由点坐标的对称性规律得:设所在的函数解析式为将代入得解得则所在的函数解析式为令得,解得因此,故选:A.【点睛】本题考查了点坐标的对称性规律、垂直平分线的性质、两点之间线段最短公理、一次函数的性质等知识点,依据题意,正确确认使四边形的周长最小时,点P、Q的位置是解题关键.9、C【分析】由于△ABO关于x轴对称,所以点B与点A关于x轴对称.根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点:关于x轴对称的点,横坐标相同,纵坐标互为相反数,得出结果.【详解】由题意,可知点B与点A关于x轴对称,又∵点A的坐标为(a,b),∴点B的坐标为(a,−b).故选:C.【点睛】本题考查了平面直角坐标系中关于x轴成轴对称的两点的坐标之间的关系.能够根据题意得出点B与点A关于x轴对称是解题的关键.10、B【分析】在一定条件下,可能发生也可能不发生的事件,称为随机事件.事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定事件.【详解】A.若摸出的4个球全部是红球,则其中一个一定不是绿球,故本选项属于随机事件;B.摸出的4个球其中一个是红球,故本选项属于必然事件;C.若摸出的4个球全部是红球,则不可能摸出一个绿球,故本选项属于随机事件;D.摸出的4个球中不可能没有红球,至少一个红球,故本选项属于不可能事件;故选B.【点睛】本题主要考查了随机事件,事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件.二、填空题(每小题3分,共24分)11、1【分析】由于折叠,可得三角形全等,运用三角形全等得出∠ADE=∠FDE=55°,则∠BDF即可求.【详解】解:∵D、E为△ABC两边AB、AC的中点,即DE是三角形的中位线.∴DE∥BC∴∠ADE=∠B=55°∴∠EDF=∠ADE=55°∴∠BDF=180-55-55=1°.故答案为:1.12、【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).0.000000156第一个有效数字前有7个0(含小数点前的1个0),从而.13、【分析】利用线段垂直平分线的性质和等边对等角可得,从而可求得,再利用三角形内角和定理即可得解.【详解】解:∵DE垂直平分BC交BC于点D,,∴EC=BE,∴,∵,∴,∴.故答案为:.【点睛】本题考查垂直平分线的性质,等腰三角形的性质.理解垂直平分线的点到线段两端距离相等是解题关键.14、【分析】由AD=BD得∠DAB=∠DBA,再由三角形外角的性质得∠CDB=2x°;由BD=BC得∠C=∠CDB=2x°;最后由三角形内角和求出∠ABC的值.【详解】∵AD=BD,∴∠DAB=∠DBA,∵∠A=x°∴∠CDB=∠DAB+∠DBA=2x°;∵BD=BC,∴∠C=∠CDB=2x°;在△ABC中,∠A+∠C+∠ABC=180°∴∠ABC=180°-∠A-∠C=(180-x)°.故答案为:(180-3x).【点睛】本题主要考查了等腰三角形的性质以及三角形内角和定理,熟练掌握性质和定理是解题的关键.15、80°或50°【解析】分两种情况:①当80°的角为等腰三角形的顶角时,底角的度数=(180°−80°)÷2=50°;②当80°的角为等腰三角形的底角时,其底角为80°,故它的底角度数是50或80.故答案为:80°或50°.16、30°【详解】解∵AB∥CD,∴∠D=∠AFE,∵∠D=70°,∴∠AFE=70°,∵∠B=40°,∠E=∠AFE-∠B=30°.故答案为:30°.【点睛】本题考查了平行线性质定理;三角形外角性质,了解三角形一个外角等于和它不相邻的两个内角的和是解题的关键.17、5【分析】由题意根据同底数幂的除法,进行分析计算即可.【详解】解:∵,,∴.故答案为:5.【点睛】本题考查同底数幂的除法,熟练掌握同底数幂的除法法则即同底数幂相除指数相减是解题的关键.18、二【分析】根据y随x增大而减小可得m的范围,代入点A坐标,得到点A的横、纵坐标的范围,从而可以判断点A所在象限.【详解】解:∵中y随x增大而减小,∴m+2<0,解得:m<-2,∴m-1<-3,3-m>5,∴点在第二象限.故答案为:二.【点睛】本题考查了一次函数的增减性,解题的关键是根据y随x的增大的变化情况得出m的取值范围.三、解答题(共66分)19、见解析【分析】作直线,垂足为C,在直线m上截取CB=b,在直线N上截取线段CD=a,在CD上截取CA=,连接AB,则△ABC即为所求作.【详解】如图所示:△ABC即为所求【点睛】本题考查作图—复杂作图,线段的垂直平分线的性质,解题的关键是熟练掌握基本知识.20、官有200人,兵有800人【分析】设官有x人,兵有y人,根据1000官兵正好分1000匹布,即可得出关于x,y的二元一次方程组,解之即可得出结论.【详解】解:设官有x人,兵有y人,依题意,得:,解得:.答:官有200人,兵有800人.【点睛】本题主要考查二元一次方程组的应用,根据题意列出二元一次方程组是解题的关键.21、(1)①见解析;②见解析;(2)2【分析】(1)①只要证明∠2+∠BAF=∠1+∠BAF=60°即可解决问题;②只要证明△BFC≌△ADB,即可推出∠BFC=∠ADB=90°;(2)在BF上截取BK=AF,连接AK.只要证明△ABK≌CAF,可得S△ABK=S△AFC,再证明AF=FK=BK,可得S△ABK=S△AFK,即可解决问题;【详解】(1)①证明:如图1中,∵AB=AC,∠ABC=60°∴△ABC是等边三角形,∴∠BAC=60°,∵AD⊥BN,∴∠ADB=90°,∵∠MBN=30°,∠BFD=60°=∠1+∠BAF=∠2+∠BAF,∴∠1=∠2②证明:如图2中,在Rt△BFD中,∵∠FBD=30°,∴BF=2DF,∵BF=2AF,∴BF=AD,∵∠BAE=∠FBC,AB=BC,∴△BFC≌△ADB,∴∠BFC=∠ADB=90°,∴BF⊥CF(2)在BF上截取BK=AF,连接AK.∵∠BFE=∠2+∠BAF,∠CFE=∠4+∠1,∴∠CFB=∠2+∠4+∠BAC,∵∠BFE=∠BAC=2∠EFC,∴∠1+∠4=∠2+∠4∴∠1=∠2,∵AB=AC,∴△ABK≌CAF,∴∠3=∠4,S△ABK=S△AFC,∵∠1+∠3=∠2+∠3=∠CFE=∠AKB,∠BAC=2∠CEF,∴∠KAF=∠1+∠3=∠AKF,∴AF=FK=BK,∴S△ABK=S△AFK,∴.【点睛】本题考查全等三角形的判定和性质、等边三角形的性质、等腰三角形的判定和性质、直角三角形30度角性质等知识,解题的关键是能够正确添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.22、(1);(2)是等腰三角形,理由见解析【分析】(1)首先将前三项组合,利用完全平方公式分解因式,进而利用平方差公式分解因式得出即可;(2)首先将前两项以及后两项组合,进而提取公因式法分解因式,即可得出a,b,c的关系,判断三角形形状即可.【详解】解:(1)=(2)∵∴∴∴或,∴是等腰三角形.【点睛】此题主要考查了分组分解法分解因式以及等腰三角形的判定,正确分组分解得出是解题关键.23、(1);(2);(3)【分析】(1)根据二次根式的混合运算法则进行计算;(2)先算括号里的,再算除法,最后算减法;(3)利用加减消元法解得即可.【详解】解:(1)原式==;(2)原式===;(3),①×2-②×5得:-7y=7,解得y=-1,代入②,解得x=2,∴方程组的解为.【点睛】本题考查了二次根式的混合运算和解二元一次方程组,解题的关键是掌握运算法则和运算顺序,以及方程组解法的选择.24、(1);(1)是定值,定值为1;(3),,,,,,【解析】(1)利用“待定系数法”可求出解析式,然后过点C作CF⊥OB,利用等腰三角形的性质求出点C横坐标,再利用解析式求出点C坐标即可;(1)先利用勾股定理计算出AB、OC长,从而证明OC=BC=AC,再利用“等边对等角”得到∠CAO=∠AOC,最后利用三角形外角定理即可得到结果;(3)分BP=BC、CP=CB、PB=PC三种情况讨论,分别进行计算即可.【详解】解:(1)设:,代入点、可得,解得:,即:,设,如图作,∵,,∴,∴,即,将点代入可得:,∴;(1)是定值,定值为1.由(1)可得,,∴在中,,又∵在,,,∴,∴,∴,∴,∴,又∵,∴,∴,又∵,∴;(3)①BC=BP=时:当点P在x轴上时,OP=或,此时,,当
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 码头电力供应应急预案
- 醋酸乙酯课程设计
- 展览馆建设院墙施工合同
- 绩效与薪酬管理课程设计
- 2024新装变压器合同
- 塞浦路斯餐厅租赁合同
- 熟食店卫生所合同范本
- 快递公司商铺出租合同细节
- 软件开发与算法课程设计
- 2024标准的员工劳动合同
- 妇联五年工作总结九篇
- 锅炉使用单位每日锅炉安全检查记录、每周锅炉安全排查治理报告、每月锅炉安全月调度会议纪要
- 饥荒游戏修改编程
- 牧童笛的基础知识与演奏技能 用舌技术怎样演奏好吐音
- 康复医学课件:骨关节疾病康复
- 牵引及石膏病人的护理
- 铁路混凝土拌和站标准化管理演示
- 2023年现行施工规范大全
- 竞争性磋商评分办法综合评分法
- 林汉达中国历史故事集导读
- 创新高质量发展理念 打造“一院多区”集团化财务管理体系
评论
0/150
提交评论