版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏徐州侯集高级中学2024届高一上数学期末考试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.下列命题中正确的是()A.第一象限角小于第二象限角 B.锐角一定是第一象限角C.第二象限角是钝角 D.平角大于第二象限角2.已知且,则()A.有最小值 B.有最大值C.有最小值 D.有最大值3.命题“”否定是()A. B.C. D.4.函数图象一定过点A.(0,1) B.(1,0)C.(0,3) D.(3,0)5.若,且,则的值是A. B.C. D.6.设一个半径为r的球的球心为空间直角坐标系的原点O,球面上有两个点A,B,其坐标分别为(1,2,2),(2,-2,1),则()A. B.C. D.7.,,且(3)(λ),则λ等于()A. B.-C.± D.18.逻辑斯蒂函数fx=11+eA.函数fx的图象关于点0,fB.函数fx的值域为(0,1C.不等式fx>D.存在实数a,使得关于x的方程fx9.已知函数的定义域为[1,10],则的定义域为()A. B.C. D.10.已知角的终边经过点,则().A. B.C. D.11.在空间直角坐标系中,点关于平面的对称点是A. B.C. D.12.下面四种说法:①若直线异面,异面,则异面;②若直线相交,相交,则相交;③若,则与所成的角相等;④若,,则.其中正确的个数是()A.4 B.3C.2 D.1二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.已知,,且,则的最小值为________.14.已知幂函数的定义域为,且单调递减,则________.15.若,则实数____________.16.定义域为上的函数满足,且当时,,若,则a的取值范围是______三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.对于函数f(x),若在定义域内存在实数x0,满足f(-x0)=-f(x(1)已知函数f(x)=sin(x+π3)(2)设f(x)=2x+m是定义在[-1,1]上的“M(3)若f(x)=log2(x218.已知,是方程的两根.(1)求实数的值;(2)求的值;(3)求的值.19.如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,平面PCD⊥底面ABCD,且BC=2,,(1)证明:(2)若,求四棱锥的体积20.某次数学考试后,抽取了20名同学的成绩作为样本绘制了频率分布直方图如下:(1)求频率分布直方图中的值;(2)求20位同学成绩的平均分;(3)估计样本数据的第一四分位数和第80百分位数(保留三位有效数字)21.已知函数,为常数.(1)求函数的最小正周期及对称中心;(2)若时,的最小值为-2,求的值22.已知函数的定义域为,若存在实数,使得对于任意都存在满足,则称函数为“自均值函数”,其中称为的“自均值数”.(1)判断函数是否为“自均值函数”,并说明理由:(2)若函数,为“自均值函数”,求的取值范围;(3)若函数,有且仅有1个“自均值数”,求实数的值.
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、B【解析】根据象限角的定义及锐角、钝角及平角的大小逐一分析判断即可得解.【详解】解:为第一象限角,为第二象限角,故A错误;因为锐角,所以锐角一定是第一象限角,故B正确;因为钝角,平角,为第二象限角,故CD错误.故选:B.2、A【解析】根据,变形为,再利用不等式的基本性质得到,进而得到,然后由,利用基本不等式求解.【详解】因为,所以,所以,所以,所以,所以,当且仅当时取等号,故选:A.【点睛】思路点睛:本题思路是利用分离常数法转化为,再由,利用不等式的性质构造,再利用基本不等式求解.3、A【解析】根据全称命题的否定为特称命题,即可得到答案【详解】全称命题的否定为特称命题,命题“”的否定是,故选:A4、C【解析】根据过定点,可得函数过定点.【详解】因为在函数中,当时,恒有,函数的图象一定经过点,故选C.【点睛】本题主要考查指数函数的几何性质,属于简单题.函数图象过定点问题主要有两种类型:(1)指数型,主要借助过定点解答;(2)对数型:主要借助过定点解答.5、A【解析】由,则,考点:同角间基本关系式6、C【解析】由已知求得球的半径,再由空间中两点间的距离公式求得|AB|,则答案可求【详解】∵由已知可得r,而|AB|,∴|AB|r故选C【点睛】本题考查空间中两点间距离公式的应用,是基础题7、A【解析】利用向量垂直的充要条件列出方程,利用向量的运算律展开并代值,即可求出λ【详解】∵,∴=0,∵(3)⊥(λ),∴(3)•(λ)=0,即3λ2+(2λ﹣3)﹣22=0,∴12λ﹣18=0,解得λ=故选A8、D【解析】A选项,代入f-x,计算fx+f-x=1和f0=12,可得对称性;B选项,由【详解】解:对于A:fx=11+e-x=ex1+ex,f-x对于B:fx=11+e-x,易知e-x>0,所以1+e对于C:由fx=11+e-x容易判断,函数fx在R上单调递增,且f对于D:因为函数fx在R上单调递增,所以方程fx故选:D.9、B【解析】根据函数的定义域,结合要求的函数形式,列出满足条件的定义域关系,求解即可.【详解】由题意可知,函数的定义域为[1,10],则函数成立需要满足,解得.故选:B.10、A【解析】根据三角函数的概念,,可得结果.【详解】因为角终边经过点所以故选:A【点睛】本题主要考查角终边过一点正切值的计算,属基础题.11、C【解析】关于平面对称的点坐标相反,另两个坐标相同,因此结论为12、D【解析】对于①,直线a,c的关系为平行、相交或异面.故①不正确对于②,直线a,c的关系为平行、相交或异面.故②不正确对于③,由异面直线所成角的定义知正确对于④,直线a,c关系为平行、相交或异面.故④不正确综上只有③正确.选D二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、12【解析】,展开后利用基本不等式可求【详解】∵,,且,∴,当且仅当,即,时取等号,故的最小值为12故答案为:1214、【解析】根据幂函数的单调性,得到的范围,再由其定义域,根据,即可确定的值.【详解】因为幂函数的定义域为,且单调递减,所以,则,又,所以的所有可能取值为,,,当时,,其定义域为,不满足题意;当时,,其定义域为,满足题意;当时,,其定义域为,不满足题意;所以.故答案为:15、5##【解析】根据题中条件,由元素与集合之间的关系,得到求解,即可得出结果.【详解】因为,所以,解得.故答案为:.16、【解析】根据,可得函数图象关于直线对称,当时,,可设,根据,即可求解;【详解】解:,的函数图象关于直线对称,函数关于y轴对称,当时,,那么时,,可得,由,得解得:;故答案为.【点睛】本题考查了函数的性质的应用及不等式的求解,属于中档题.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)函数f(x)=sin(x+π3)是“M【解析】(1)由f(-x)=-f(x),得sin(-x+π3)=-(2)由题存在实数x0∈[-1,1]满足f(-x0)=-f(x0),即方程2xm取最小值-(3)由题即存在实数x0,满足f(-x0)=-f(x0)试题解析:(1)由f(-x)=-f(x),得:sin所以3所以存在x0=所以函数f(x)=sin(x+π(2)因为f(x)=2x+m是定义在[-1,1]所以存在实数x0∈[-1,1]满足即方程2x+2令t=则m=-12(t+1t),因为所以当t=12或t=2时,m(3)由x2-2mx>0对x≥2因为若f(x)=log2(所以存在实数x0,满足①当x0≥2时,-x0因为函数y=12x-4②当-2<x0<2时,-2<-③当x0≤-2时,-x0因为函数y=-12综上所述,实数m的取值范围是[-1,1)点睛:已知方程有根问题可转化为函数有零点问题,求参数常用的方法和思路有:(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成函数的值域问题解决;(3)数形结合法:先对解析式变形,在同一个平面直角坐标系中,画出函数图像,然后数形结合求解.18、(1);(2);(3)【解析】(1)根据方程的根与系数关系可求,,然后结合同角平方关系可求,(2)结合(1)可求,,结合同角基本关系即可求,(3)利用将式子化为齐次式,再利用同角三角函数的基本关系,将弦化切,代入可求【详解】解:(1)由题意可知,,,∴,∴,∴,(2)方程的两根分别为,,∵,∴,∴,,则,(3)【点睛】本题主要考查了同角三角函数关系式和万能公式的应用,属于基本知识的考查19、(1)证明见解析;(2)8.【解析】(1)由平行四边形的性质及勾股定理可得,再由面面垂直的性质有BC⊥面PCD,根据线面垂直的性质即可证结论.(2)取CD的中点E,连接PE,易得,由面面垂直的性质有PE⊥底面ABCD,即PE是四棱锥的高,应用棱锥的体积公式求体积即可.【小问1详解】在平行四边形ABCD中因为,即,所以因为面PCD⊥面ABCD,且面PCD面ABCD=CD,面PCD,所以BC⊥面PCD,又PD平面PCD,所以【小问2详解】如图,取CD的中点E,连接PE,因为,所以,又面PCD⊥面ABCD,面PCD面ABCD=CD,面PCD,所以PE⊥底面ABCD因为,,则,故20、(1);(2);(3)第一四分位数为70.0;第80分位数为【解析】(1)根据频率分布直方图中的频率之和为1即可求解;(2)根据频率分布直方图中平均数的计算公式即可求解;(3)根据题意,结合百分位数的概念与计算公式,即可求解.【详解】(1)依图可得:,解得:(2)根据题意得,(3)由图可知,,,,,对应频率分别为:0.1,0.15,0.35,0.3,0.1,前两组频率之和恰为0.25,故第一四分位数为70.0前三组频率之和为0.6,前四组频率之和为0.9,所以第80分位数在第四组设第80分位数为,则,解得:21、(1)最小正周期.对称中心为:,.(2)【解析】(1)根据周期和对称轴公式直接求解;(2)先根据定义域求的范围,再求函数的最小值,求参数的值.【详解】(1)∵,∴的最小正周期令,,解得,,∴的对称中心为:,.(2)当时,,故当时,函数取得最小值,即,∴取得最小值为,∴【点睛】本题考查的基本性质,意在考查基本公式和基本性质,属于基础题型.22、(1)不是,理由见解析;(2);(3)或.【解析】(1)假定函数是“自均值函数”,由函数的值域与函数的值域关系判断作答.(2)根据给定定义可得函数在上的值域包含函数在上的值域,由此推理计算作答.(3)根据给定定义可得函数在上的值域包含函数在上的值域,再借助a值的唯一性即可推理计算作答.【小问1详解】假定函数是“自均值函数”,显然定义域为R,则存在,对于,存在,有,即,依题意,函数在R上的值域应包含函数在R上的值域,而当时,值域是,当时,的值域是R,显然不包含R,所以函数不“自均值函数”.【小问2详解】依题意,存在,对于,存在,有,即,当时,的值域是,因此在的值域包含,当时,而,则,若,则,,此时值域的区间长度不超过,而区间长度为1,不符合题意,于是得,,要在的值域包含,则在的最小值小于等于0,又时,递减,且,从而有,解得,此时,取,的值域是包含于
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024幼儿园招生及宣传推广聘用合同3篇
- 2024年简化版商业合作伙伴解除协议范本
- 2024年鱼塘承包经营权与水资源保护合作协议书3篇
- 2025年度房地产开发商与政府土地购置合同2篇
- 乐器行业会计工作总结
- 2024年版房产开发商住宅购买协议
- 2024年物业服务协议标准文本版B版
- 《Pro Engineer4.0零件建模实例》课件第1章
- 幼儿园工作总结创意启迪智慧滋养
- 周边环境卫生防护措施
- “青蓝工程”师徒结对体育青年教师总结反思
- 设备维护检查修理三级保养记录表
- 施工安全风险分析及应对措施表
- 《针灸推拿》题库
- 2023年上海市初中物理竞赛复赛试题银光杯
- GB/T 20475.2-2006煤中有害元素含量分级第2部分:氯
- GB 18218-2000重大危险源辨识
- 神通数据库管理系统v7.0企业版-2实施方案
- 油田视频监控综合应用平台解决方案
- 福建省泉州市各县区乡镇行政村村庄村名明细及行政区划代码
- 酒精性脑病的护理查房实用版课件
评论
0/150
提交评论