




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省扬州市宝应中学2024届数学高一上期末调研试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.函数的图象大致是()A. B.C. D.2.已知,,则()A. B.C. D.3.已知,则()A. B.C. D.4.三条直线l1:ax+by-1=0,l2:2x+(a+2)y+1=0,l3:bx-2y+1=0,若l1,l2都和l3垂直,则a+b等于()A. B.6C.或6 D.0或45.为了得到函数的图象,只要把函数图象上所有的点()A.横坐标伸长到原来的2倍,纵坐标不变B.横坐标缩短到原来的倍,纵坐标不变C.纵坐标伸长到原来的2倍,横坐标不变D.纵坐标缩短到原来的倍,横坐标不变6.若∃x∈[0,3],使得不等式x2﹣2x+a≥0成立,则实数a的取值范围是()A.﹣3≤a≤0 B.a≥0C.a≥1 D.a≥﹣37.如图,有一个水平放置的透明无盖的正方体容器,容器高4cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为3cm,如果不计容器的厚度,则球的体积为A.B.C.D.8.半径为2,圆心角为的扇形的面积为()A. B.C. D.29.若是三角形的一个内角,且,则三角形的形状为()A.钝角三角形 B.锐角三角形C.直角三角形 D.无法确定10.已知,则A.-2 B.-1C. D.2二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.若函数在区间内为减函数,则实数a的取值范围为___________.12.圆:与圆:的公切线条数为____________.13.在中,,,且在上,则线段的长为______14.一个扇形的中心角为3弧度,其周长为10,则该扇形的面积为__________15.已知函数,则的值为_________.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知函数(1)若,,求;(2)将函数的图象先向左平移个单位长度,再把所得图象上所有点的横坐标变为原来的,纵坐标不变,得到函数的图象.求函数的单调递增区间17.已知函数是定义在上的偶函数,当时,(1)求的解析式;(2)解不等式18.已知为第四象限角,且,求下列各式的值(1);(2)19.已知向量,,且.(1)的值;(2)若,,且,求的值20.设在区间单调,且都有(1)求的解析式;(2)用“五点法”作出在的简图,并写出函数在的所有零点之和.21.已知函数,其中m为实数(1)求f(x)的定义域;(2)当时,求f(x)的值域;(3)求f(x)的最小值
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、B【解析】根据题意,先分析函数的奇偶性,排除AC,再判断函数在上的符号,排除D,即可得答案【详解】∵f(x)定义域[-1,1]关于原点对称,且,∴f(x)为偶函数,图像关于y轴对称,故AC不符题意;在区间上,,,则有,故D不符题意,B正确.故选:B2、B【解析】应用同角关系可求得,再由余弦二倍角公式计算.【详解】因,所以,所以,所以.故选:B.【点睛】本题考查同角间的三角函数关系,考查余弦的二倍角公式.求值时要注意角的取值范围,以确定函数值的正负.3、D【解析】先求出,再分子分母同除以余弦的平方,得到关于正切的关系式,代入求值.【详解】由得,,所以故选:D4、C【解析】根据相互垂直的两直线斜率之间的关系对b分类讨论即可得出【详解】l1,l2都和l3垂直,①若b=0,则a+2=0,解得a=﹣2,∴a+b=﹣2②若b≠0,则1,1,联立解得a=2,b=4,∴a+b=6综上可得:a+b的值为﹣2或6故选C【点睛】本题考查了相互垂直的直线斜率之间的关系、分类讨论方法,考查了推理能力与计算能力,属于基础题5、B【解析】直接利用三角函数伸缩变换法则得到答案.【详解】为了得到函数的图象,只需把函数的图象上所有的点横坐标缩短到原来的倍,纵坐标不变.故选:B6、D【解析】等价于二次函数的最大值不小于零,即可求出答案.【详解】设,,使得不等式成立,须,即,或,解得.故选:D【点睛】本题考查特称命题成立求参数的问题,等价转化是解题的关键,属于基础题.7、A【解析】设球的半径为R,根据已知条件得出正方体上底面截球所得截面圆的半径为2cm,球心到截面圆圆心的距离为,再利用球的性质,求得球的半径,最后利用球体体积公式,即可得出答案【详解】设球的半径为R,设正方体上底面截球所得截面圆恰好为上底面正方形的内切圆,该圆的半径为,且该截面圆圆心到水面的距离为1cm,即球心到截面圆圆心的距离为,由勾股定理可得,解得,因此,球的体积为故选A【点睛】本题主要考查了球体的体积的计算问题,解决本题的关键在于利用几何体的结构特征和球的性质,求出球体的半径,着重考查了空间想象能力,以及推理与计算能力,属于基础题8、D【解析】利用扇形的面积公式即得.【详解】由题可得.故选:D9、A【解析】已知式平方后可判断为正判断的正负,从而判断三角形形状【详解】解:∵,∴,∵是三角形的一个内角,则,∴,∴为钝角,∴这个三角形为钝角三角形.故选:A10、B【解析】,,则,故选B.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】由复合函数单调性的判断法则及对数函数的真数大于0恒成立,列出不等式组求解即可得答案.【详解】解:因为,函数在区间内为减函数,所以有,解得,所以实数a的取值范围为,故答案为:.12、3【解析】将两圆的公切线条数问题转化为圆与圆的位置关系,然后由两圆心之间的距离与两半径之间的关系判断即可.【详解】圆:,圆心,半径;圆:,圆心,半径.因为,所以两圆外切,所以两圆的公切线条数为3.故答案为:313、1【解析】∵,∴,∴,∵且在上,∴线段为的角平分线,∴,以A为原点,如图建立平面直角坐标系,则,D∴故答案为114、6【解析】利用弧长公式以及扇形周长公式即可解出弧长和半径,再利用扇形面积公式即可求解.【详解】设扇形的半径为,弧长为,则,解得,所以,答案为6.【点睛】主要考查弧长公式、扇形的周长公式以及面积公式,属于基础题.15、【解析】,填.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)(2)【解析】(1)由平方关系求出,再由求解即可;(2)由伸缩变换和平移变换得出的解析式,再由正弦函数的性质得出函数的单调递增区间【小问1详解】依题意,因为,所以,所以从而【小问2详解】将函数的图象先向左平移个单位长度,得到函数的图象再把所得图象上所有点的横坐标变为原来的,得到函数的图象令,的单调递增区间是所以,,解得,所以函数的单调递增区间为17、(1);(2).【解析】(1)利用偶函数的定义可求得函数在上的解析式,综合可得出函数的解析式;(2)令,则所求不等式可变为,求出的取值范围,可得出关于的不等式,解之即可.【小问1详解】解:因为数是定义在R上的偶函数,当,,则当时,,.因此,对任意的,.【小问2详解】解:由(1)得,所以不等式,即,令,则,于是,解得,所以,得或,从而不等式的解集为18、(1)(2)【解析】(1)先根据同角三角函数的关系求解可得,再根据同角三角函数的关系化简即可(2)先根据,再根据求解即可【小问1详解】∵是第四象限角,∴,,又∵,∴,故∴(负值舍去),,∴故【小问2详解】∵,∴19、(1);(2)【解析】(1)首先应用向量数量积坐标公式求得,结合,求得,得到结果;(2)结合题的条件,利用同角三角函数关系式求得,结合角的范围以及(1)的结论,求得,再应用余弦和角公式求得的值,结合角的范围求得,得到结果.【详解】(1)因为,,所以因为,所以,即.(2)因为,,所以.因为,,所以.因为,所以,所以.因为,,所以,所以.【点睛】该题考查的是有关三角恒等变换的问题,涉及到的知识点有向量数量积坐标公式,同角三角函数关系式,余弦的和角公式,利用角的三角函数值的大小,结合角的范围求角的大小,属于简单题目.20、(1)(2)图象见解析,所有零点之和为【解析】(1)依题意在时取最大值,在时取最小值,再根据函数在单调,即可得到,即可求出,再根据函数在取得最大值求出,即可求出函数解析式;(2)列出表格画出函数图象,再根据函数的对称性求出零点和;【小问1详解】解:依题意在时取最大值,在时取最小值,又函数在区间单调,所以,即,又,所以,由得,即,又因为,所以,,所以.【小问2详解】解:列表如下0001所以函数图象如下所示:由图知的一条对称轴为有两个实数根,记为,则由对称性知,所以所有实根之和为.21、(1)(2)[2,2](3)当时,f(x)的最小值为2;当时,f(x)的最小值为【解析】(1)根据函数解析式列出相应的不等式组,即可求得函数定义域;(2)令,采用两边平方的方法,即可求得答案;(3)仿(2),令,可得,从而将变为关于t的二次函数,然后根据在给定区间上的二次函数的最
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 引导幼儿园小班的团队协作与竞争意识计划
- 备考育婴师考试的策略试题及答案
- 2024年育婴师备考策略试题及答案
- 全媒体运营师行业发展试题及答案
- 2025执业兽医复习要点总结试题及答案
- 2024年图形界面设计试题及答案
- 黑龙江省佳木斯市汤原县高级中学2024-2025学年高三下期中考试(历史试题文)试题含解析
- 黑龙江省哈六中2025年全国新高三下学期开学大联考试题数学试题含解析
- 黑龙江省哈尔滨旭东中学2024-2025学年初三下学期化学试题统练(七)(期中模拟)含解析
- 黑龙江省牡丹江市绥芬河市2024-2025学年五下数学期末复习检测模拟试题含答案
- 数字信号处理(课件)
- 沉淀理论课件
- 最新高三主题班会:行百里者半九十课件
- 土方回填施工记录表
- 体育调查问卷
- 公司样品标识卡
- 英语人教新起点(一起)四年级下册-Unit 3 Lesson 2 Travel plans教学设计
- SONYα300α350使用手册
- 海外专家部分项目简介
- 医疗美容主诊医师备案服务指南
- 集装箱吊装方案(共5页)
评论
0/150
提交评论