版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
淮北市重点中学2024届数学高一上期末考试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的单调递增区间是A. B.C. D.2.将函数的图象向右平移个单位长度,所得图象对应的函数()A.在区间上单调递减 B.在区间上单调递增C.在区间上单调递减 D.在区间上单调递增3.铁路总公司关于乘车行李规定如下:乘坐动车组列车携带品的外部尺寸长、宽、高之和不超过.设携带品外部尺寸长、宽、高分别为(单位:),这个规定用数学关系式表示为()A. B.C. D.4.菱形ABCD在平面α内,PC⊥α,则PA与BD的位置关系是()A.平行 B.相交但不垂直C.垂直相交 D.异面且垂直5.函数的图象的横坐标和纵坐标同时扩大为原来的3倍,再将图象向右平移3个单位长度,所得图象的函数解析式为A. B.C. D.6.函数的图象的一个对称中心是()A B.C. D.7.下列函数中,最小正周期为,且图象关于直线对称的是A. B.C. D.8.在同一直角坐标系中,函数的图像可能是()A. B.C. D.9.已知,,,则a、b、c的大小关系是()A. B.C. D.10.如图,四棱锥的底面为正方形,底面,则下列结论中不正确的是A.B.平面C.平面平面D.与所成的角等于与所成的角二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数的图象过原点,且无限接近直线,但又不与该直线相交,则______12.已知扇形的圆心角为,其弧长是其半径的2倍,则__________13.如图,在长方体ABCD—中,AB=3cm,AD=2cm,,则三棱锥的体积___________.14.已知正数a,b满足,则的最小值为______15.若函数的值域为,则的取值范围是__________16.函数的定义域为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在平面直角坐标系中,角()和角()的顶点均与坐标原点重合,始边均为轴的非负半轴,终边分别与单位圆交于两点,两点的纵坐标分别为,.(1)求,的值;(2)求的值.18.已知函数,实数且(1)设,判断函数在上的单调性,并说明理由;(2)设且时,的定义域和值域都是,求的最大值19.已知函数(且)的图象恒过点A,且点A在函数的图象上.(1)求的最小值;(2)若,当时,求的值域.20.如图,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=,M为BC的中点.(I)证明:AM⊥PM;(II)求二面角P-AM-D的大小.21.已知函数,在区间上有最大值,最小值,设函数.(1)求的值;(2)不等式在上恒成立,求实数的取值范围;(3)方程有三个不同的实数解,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】,选D.2、D【解析】由条件根据函数的图象变换规律得到变换之后的函数解析式,再根据正弦函数的单调性判断即可【详解】解:将函数的图象向右平移个单位长度,得到,若,则,因为在上不单调,故在上不单调,故A、B错误;若,则,因为在上单调递增,故在上单调递增,故C错误,D正确;故选:D3、C【解析】根据长、宽、高的和不超过可直接得到关系式.【详解】长、宽、高之和不超过,.故选:.4、D【解析】由菱形ABCD平面内,则对角线,又,可得平面,进而可得,又显然,PA与BD不在同一平面内,可判断其位置关系.【详解】假设PA与BD共面,根据条件点和菱形ABCD都在平面内,这与条件相矛盾.故假设不成立,即PA与BD异面.又在菱形ABCD中,对角线,,,则且,所以平面平面.则,所以PA与BD异面且垂直.故选:D【点睛】本题考查异面直线的判定和垂直关系的证明,属于基础题.5、D【解析】函数的图像的横坐标和纵坐标同时扩大为原来的3倍,所得图像的解析式为,再向右平移3个单位长度,所得图像的解析式为,选D.6、B【解析】利用正弦函数的对称性质可知,,从而可得函数的图象的对称中心为,再赋值即可得答案【详解】令,,解得:,.所以函数的图象的对称中心为,.当时,就是函数的图象的一个对称中心,故选:B.7、B【解析】因为函数的最小正周期是,故先排除选项D;又对于选项C:,对于选项A:,故A、C均被排除,应选B.8、D【解析】通过分析幂函数和对数函数的特征可得解.【详解】函数,与,答案A没有幂函数图像,答案B.中,中,不符合,答案C中,中,不符合,答案D中,中,符合,故选D.【点睛】本题主要考查了幂函数和对数函数的图像特征,属于基础题.9、D【解析】借助中间量比较即可.详解】解:根据题意,,,,所以故选:D10、D【解析】结合直线与平面垂直判定和性质,结合直线与平面平行的判定,即可【详解】A选项,可知可知,故,正确;B选项,AB平行CD,故正确;C选项,,故平面平面,正确;D选项,AB与SC所成的角为,而DC与SA所成的角为,故错误,故选D【点睛】考查了直线与平面垂直的判定和性质,考查了直线与平面平行的判定,考查了异面直线所成角,难度中等二、填空题:本大题共6小题,每小题5分,共30分。11、##0.75【解析】根据条件求出,,再代入即可求解.【详解】因为的图象过原点,所以,即.又因为的图象无限接近直线,但又不与该直线相交,所以,,所以,所以故答案为:12、-1【解析】由已知得,所以则,故答案.13、1【解析】根据题意,求得棱锥的底面积和高,由体积公式即可求得结果.【详解】根据题意可得,平面,故可得,又因为,故可得.故答案为:.【点睛】本题考查三棱锥体积的求解,涉及转换棱锥的顶点,属基础题.14、##【解析】右边化简可得,利用基本不等式,计算化简即可求得结果.【详解】,故,则,当且仅当时,等号成立故答案为:15、【解析】由题意得16、【解析】由对数的真数大于零、二次根式的被开方数非负,分式的分母不为零,列不等式组可求得答案【详解】由题意得,解得,所以函数的定义域为,故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)【解析】(1)先利用任意角的三角函数的定义求出,再利用同角三角函数的关系可求得答案,(2)先利用诱导公式化简,再代值计算即可【小问1详解】因为在平面直角坐标系中,角,的顶点均与坐标原点重合,终边分别与单位圆交于两点,且两点的纵坐标分别为,,又因为,,根据三角函数的定义得:,,所以,,所以,.【小问2详解】18、(1)在上单调递增,理由见解析(2)【解析】(1)由定义法直接证明可得;(2)由题知是方程的不相等的两个正数根,然后整理成一元二次方程,由判别式和韦达定理列不等式组求解可得a的范围,再用韦达定理表示出所求,然后可解.【小问1详解】设,则,,,,故在上单调递增;【小问2详解】由(1)可得时,在上单调递增,的定义域和值域都是,,则是方程的不相等的两个正数根,即有两个不相等的正数根,则,解得,,,时,最大值为;19、(1)4;(2).【解析】(1)根据对数函数恒过定点(1,0)求出m和n的关系:,则利用转化为基本不等式求最小值;(2)利用换元法令,将问题转化为二次函数求值域问题即可.【小问1详解】∵,∴函数的图象恒过点.∵在函数图象上,∴.∵,∴,,∴,,∴,当且仅当时等号成立,∴的最小值为4.【小问2详解】当时,,∵在上单调递增,∴当时,,令,则,,在上单调递增,∴当时,;当时,.故所求函数的值域为.20、(1)见解析;(2)45°.【解析】(Ⅰ)以D点为原点,分别以直线DA、DC为x轴、y轴,建立如图所示的空间直角坐标系,求出与的坐标,利用数量积为零,即可证得结果;(Ⅱ)求出平面PAM与平面ABCD的法向量,代入公式即可得到结果.【详解】(I)证明:以D点为原点,分别以直线DA、DC为x轴、y轴,建立如图所示的空间直角坐标系,依题意,可得∴∴即,∴AM⊥PM.(II)设,且平面PAM,则,即∴,取,得;取,显然平面ABCD,∴,结合图形可知,二面角P-AM-D为45°.【点睛】空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.21、(1);(2);(3)【解析】(1)利用二次函数闭区间上的最值,通过a与0的大小讨论,列出方程,即可求a,b的值;(2)转化不等式f(2x)﹣k•2x≥0,为k在一侧,另一侧利用换元法通过二次函数在x∈[﹣1,1]上恒成立,求出最值,即可求实数k的取值范围;(3)化简方程f(|2x﹣1|)+k(3)=0,转化为两个函数的图象的交点的个数,利用方程有三个不同的实数解,推出不等式然后求实数k的取值范围【详解】解:(1)g(x)=a(x﹣1)2+1+b﹣a,∵a>0,∴g(x)在[2,3]上为增函数,故,可得,⇔∴a=1,b=0(2)方程f(2x)﹣k•2x≥0化为2x2≥k•2x,k≤1令t,k≤t2﹣2t+1,∵x∈[﹣1,1],∴t,记φ(t)=t2﹣2t+1,∴φ(t)min=φ(1)=0,∴k≤0(3)由f(|2x﹣1|)+k(3)=0得|2x﹣1|(2+3k)=0,|2x﹣1|2﹣(2+3k)|2x﹣1|+(1+2k)=0,|2x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电信大楼排水管更新合同
- 2024城市供用热力合同(示范文本)模板样本
- 洗衣店衣物保管员聘用合同
- 市场联营协议
- 咨询公司广告位租赁合同
- 中南林业科技大学《城市管理学》2023-2024学年第一学期期末试卷
- 中南大学《金属腐蚀与防护》2023-2024学年第一学期期末试卷
- 人教部编八年级语文上册《回忆我的母亲》示范教学课件
- 中南大学《机器人传感与检测技术》2023-2024学年第一学期期末试卷
- 中南大学《国际商法(双语)》2022-2023学年期末试卷
- 色彩的三属性与色立体
- 农村黑臭水体整治项目可行性研究报告
- 一年级下册美术课外C班课件-打地鼠 -全国通用
- 《企业员工薪酬激励问题研究10000字(论文)》
- ICU脓毒血症护理查房
- 2023-2024学年安徽省天长市小学数学五年级下册期末自测考试题
- 2023年象山县特殊教育岗位教师招聘考试笔试模拟试题及答案解析
- GB/T 28222-2011服务标准编写通则
- GB/T 20671.7-2006非金属垫片材料分类体系及试验方法第7部分:非金属垫片材料拉伸强度试验方法
- GB/T 14337-1993合成短纤维断裂强力及断裂伸长试验方法
- GB/T 10001.4-2021公共信息图形符号第4部分:运动健身符号
评论
0/150
提交评论