江苏省滨海县2023-2024学年高一数学第一学期期末达标检测试题含解析_第1页
江苏省滨海县2023-2024学年高一数学第一学期期末达标检测试题含解析_第2页
江苏省滨海县2023-2024学年高一数学第一学期期末达标检测试题含解析_第3页
江苏省滨海县2023-2024学年高一数学第一学期期末达标检测试题含解析_第4页
江苏省滨海县2023-2024学年高一数学第一学期期末达标检测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省滨海县2023-2024学年高一数学第一学期期末达标检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.全称量词命题“,”的否定为()A., B.,C., D.,2.命题“,”的否定为()A., B.,C., D.,3.函数f(x)=lnx+3x-4的零点所在的区间为()A. B.C. D.4.下列函数中,既不是奇函数也不是偶函数的是A. B.C. D.5.已知集合,则函数的最小值为()A.4 B.2C.-2 D.-46.已知函数的图像过点和,则在定义域上是A.奇函数 B.偶函数C.减函数 D.增函数7.四名学生按任意次序站成一排,若不相邻的概率是()A. B.C. D.8.已知等比数列满足,,则()A. B.C. D.9.“,”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件10.设,,,则A. B.C. D.11.酒驾是严重危害交通安全的违法行为.根据国家有关规定:驾驶人血液中的酒精含量大于(或等于)毫克/毫升,小于毫克/毫升的情况下驾驶机动车属于饮酒驾车;含量大于(或等于)毫克/毫升的情况下驾驶机动车属于醉酒驾车.假设某驾驶员一天晚上点钟喝了一定量的酒后,其血液中酒精含量上升到毫克/毫升.如果在停止喝酒后,他血液中酒精含量以每小时的速度减少,则他次日上午最早()点(结果取整数)开车才不构成酒驾.(参考数据:,)A. B.C. D.12.若===1,则a,b,c的大小关系是()A.a>b>c B.b>a>cC.a>c>b D.b>c>a二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.若在幂函数的图象上,则______14.已知函数,则___________.15.比较大小:______cos()16.若,且,则上的最小值是_________.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.如图所示,正四棱锥中,为底面正方形的中心,侧棱与底面所成的角的正切值为(1)求侧面与底面所成的二面角的大小;(2)若是的中点,求异面直线与所成角的正切值;18.已知二次函数满足.(1)求b,c的值;(2)若函数是奇函数,当时,,(ⅰ)直接写出的单调递减区间为;(ⅱ)若,求a的取值范围.19.已知.(1)若,求的值;(2)若,且,求的值.20.已知函数,且.(1)求的解析式,判断并证明它的奇偶性;(2)求证:函数在上单调减函数.21.已知直线l过点和直线:平行,圆O的方程为,直线l与圆O交于B,C两点.(1)求直线l的方程;(2)求直线l被圆O所截得的弦长.22.已知函数(1)画出的图象,并根据图象写出的递增区间和递减区间;(2)当时,求函数的最小值,并求y取最小值时x的值.(结果保留根号)

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、C【解析】由命题的否定的概念判断.否定结论,存在量词与全称量词互换.【详解】根据全称量词命题的否定是存在量词命题,可得命题“”的否定是“”故选:C.【点睛】本题考查命题的否定,属于基础题.2、B【解析】利用含有量词的命题的否定方法:先改变量词,然后再否定结论,判断即可.【详解】解:由含有量词的命题的否定方法:先改变量词,然后再否定结论可得,命题“”的否定为:.故选:B.3、B【解析】根据函数零点的判定定理可得函数的零点所在的区间【详解】解:函数在其定义域上单调递增,(2),(1),(2)(1)根据函数零点的判定定理可得函数的零点所在的区间是,故选【点睛】本题考查求函数的值及函数零点的判定定理,属于基础题4、D【解析】根据函数奇偶性的概念,逐项判断即可.【详解】A中,由得,又,所以是偶函数;B中,定义域为R,又,所以是偶函数;C中,定义域为,又,所以是奇函数;D中,定义域为R,且,所以非奇非偶.故选D【点睛】本题主要考查函数的奇偶性,熟记概念即可,属于基础题型.5、D【解析】因为集合,所以,设,则,所以,且对称轴为,所以最小值为,故选D6、D【解析】∵f(x)的图象过点(4,0)和(7,1),∴∴f(x)=log4(x-3).∴f(x)是增函数.∵f(x)的定义域是(3,+∞),不关于原点对称.∴f(x)为非奇非偶函数故选D7、B【解析】利用捆绑法求出相邻的概率即可求解.【详解】四名学生按任意次序站成一排共有,相邻的站法有,相邻的的概率,故不相邻的概率是.故选:B【点睛】本题考查了排列数以及捆绑法在排列中的应用,同时考查了古典概型的概率计算公式.8、C【解析】由题意可得,所以,故,选C.考点:本题主要考查等比数列性质及基本运算.9、A【解析】根据三角函数的诱导公式和特殊角的三角函数,结合充分必要条件的概念即可判断.【详解】,时,,,时,,所以“,”是“”的充分而不必要条件,故选:.10、C【解析】利用有理指数幂与对数的运算性质分别比较,,与1和2的大小得答案【详解】∵,且,,,∴故选C【点睛】本题考查对数值的大小比较,考查有理指数幂与对数的运算性质,寻找中间量是解题的关键,属于基础题11、D【解析】根据题意可得不等式,解不等式可求得,由此可得结论.【详解】假设经过小时后,驾驶员开车才不构成酒驾,则,即,,则,,次日上午最早点,该驾驶员开车才不构成酒驾.故选:D.12、D【解析】由求出的值,由求得的值,由=1求得的值,从而可得答案【详解】由,可得故,由,可得,故,由,可得,故,故选D【点睛】本题主要考查对数的定义,对数的运算性质的应用,属于基础题.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、27【解析】由在幂函数的图象上,利用待定系数法求出幂函数的解析式,再计算的值【详解】设幂函数,,因为函数图象过点,则,,幂函数,,故答案为27【点睛】本题主要考查了幂函数的定义与解析式,意在考查对基础知识的掌握情况,是基础题14、【解析】利用函数的解析式由内到外逐层计算可得的值.【详解】因为,则,故.故答案为:.15、>【解析】利用诱导公式化简后,根据三角函数的单调性进行判断即可【详解】cos(π)=cos(﹣4π)=cos()=cos,cos(π)=cos(﹣4π)=cos()=cos,∵y=cosx在(0,π)上为减函数,∴coscos,即cos(π)>cos(π)故答案为>【点睛】本题主要考查函数的大小比较,根据三角函数的诱导公式以及三角函数的单调性是解决本题的关键,属于基础题16、【解析】将的最小值转化为求的最小值,然后展开后利用基本不等式求得其最小值【详解】解:因为,且,,当且仅当时,即,时等号成立;故答案为:三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)(2)【解析】(1)取中点,连结、,则是侧面与底面所成的二面角,由此能求出侧面与底面所成的二面角(2)连结,,则是异面直线与所成角(或所成角的补角),由此能求出异面直线与所成角的正切值【详解】解:(1)取中点,连结、,正四棱锥中,为底面正方形的中心,,,是侧面与底面所成的二面角,侧棱与底面所成的角的正切值为,设,得,,,,,侧面与底面所成的二面角为(2)为底面正方形的中心,是中点,连结,,是的中点,,是异面直线与所成角(或所成角的补角),,,,,异面直线与所成角的正切值为18、(1);;(2)或【解析】(1)代值计算即可,(2)先根据函数的奇偶性求出的解析式,(i)根据函数的解析式和二次函数的性质即可求出函数的单调减区间,(ii)根据函数单调性性质可得或解得即可.试题解析:二次函数满足,解得:;.(2)(ⅰ)(ⅱ)由(1)知,则当时,;当时,,则因为是奇函数,所以.若,则或解得或.综上,a的取值范围为或.19、(1)(2)【解析】(1)利用诱导公式求出,由已知得出,再由齐次式即可求解.(2)由题意可得,,再由两角和的正切公式即可求解.【小问1详解】由已知,,得所以【小问2详解】由,,可知,,∴.∵,∴.而,∴.∴,∴.20、(1),是奇函数(2)证明见解析【解析】(1)将代入,求得,再由函数奇偶性的定义判断即可;(2)利用函数单调性的定义证明即可.【详解】解:(1)∴∴,∴是奇函数(2)设,∵,,,∴,∴在上是单调减函数.【点睛】本题考查函数解析式的求法,奇偶性的证法、单调性的证明,属于中档题.21、(1)(2)【解析】(1)通过直线l和直线:平行,得到斜率,再由直线l过点,用点斜式写出方程.(2)先求出圆心O到直线l的距离,再根据弦长公式求解.【详解】(1),,又因为直线l过点∴直线l的方程为:,即(2)因为圆心O到直线l的距

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论