版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省长春市榆树市第一高级中学2023-2024学年数学高一上期末统考试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,共60分)1.甲、乙两位同学解答一道题:“已知,,求的值.”甲同学解答过程如下:解:由,得.因为,所以.所以.乙同学解答过程如下:解:因为,所以.则在上述两种解答过程中()A.甲同学解答正确,乙同学解答不正确 B.乙同学解答正确,甲同学解答不正确C.甲、乙两同学解答都正确 D.甲、乙两同学解答都不正确2.已知,且在区间有最大值,无最小值,则=()A B.C. D.3.下列四个函数中,在上为增函数的是()A. B.C. D.4.函数A.是奇函数且在区间上单调递增B.是奇函数且在区间上单调递减C.是偶函数且在区间上单调递增D.是偶函数且在区间上单调递减5.函数在单调递增,且为奇函数,若,则满足的的取值范围是A. B.C. D.6.一个多面体的三视图分别为正方形、等腰三角形和矩形,如图所示,则该多面体的体积为A.24cm3 B.48cm3C.32cm3 D.96cm37.已知幂函数在上单调递减,则m的值为()A.0 B.1C.0或1 D.8.平行四边形中,,,,点满足,则A.1 B.C.4 D.9.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设,用表示不超过x的最大整数,则称为高斯函数例如:,,已知函数,则函数的值域为()A. B.C.1, D.1,2,10.若函数取最小值时,则()A. B.C. D.11.在空间直角坐标系中,点在轴上,且点到点与点的距离相等,则点坐标为()A. B.C. D.12.已知,则()A. B.7C. D.1二、填空题(本大题共4小题,共20分)13.已知点在直线上,则的最小值为______14.已知向量,其中,若,则的值为_________.15.已知直线过两直线和的交点,且原点到该直线的距离为,则该直线的方程为_____.16.函数的单调递减区间为_______________.三、解答题(本大题共6小题,共70分)17.已知函数(1)判断的奇偶性,并加以证明;(2)求函数的值域18.已知直线(1)求直线的斜率;(2)若直线m与平行,且过点,求m方程.19.已知函数为奇函数,且图象的相邻两对称轴间的距离为.(1)求的解析式与单调递减区间;(2)已知在时,求方程的所有根的和.20.已知函数,(且.)(1)求的定义域,并判断函数的奇偶性;(2)设,对于,恒成立,求实数m的取值范围21.已知集合,(1)若,求实数a,b满足的条件;(2)若,求实数m的取值范围22.已知函数(1)求的值域;(2)讨论函数零点的个数.
参考答案一、选择题(本大题共12小题,共60分)1、D【解析】分别利用甲乙两位同学的解题方法解题,从而可得出答案.【详解】解:对于甲同学,由,得,因为因为,所以,所以,故甲同学解答过程错误;对于乙同学,因为,所以,故乙同学解答过程错误.故选:D.2、C【解析】结合题中所给函数的解析式可得:直线为的一条对称轴,∴,∴,又,∴当k=1时,.本题选择C选项.3、C【解析】A.利用一次函数的性质判断;B.利用二次函数的性质判断;C.利用反比例函数的性质判断;D.由,利用一次函数的性质判断;【详解】A.由一次函数的性质知:在上为减函数,故错误;B.由二次函数的性质知:在递减,在上递增,故错误;C.由反比例函数的性质知:在上递增,在递增,则在上为增函数,故正确;D.由知:函数在上为减函数,故错误;故选:C【点睛】本题主要考查一次函数,二次函数和反比例函数的单调性,属于基础题.4、A【解析】由可知是奇函数,排除,,且,由可知错误,故选5、D【解析】是奇函数,故;又是增函数,,即则有,解得,故选D.【点睛】解本题的关键是利用转化化归思想,结合奇函数的性质将问题转化为,再利用单调性继续转化为,从而求得正解.6、B【解析】由三视图可知该几何体是一个横放的直三棱柱,利用所给的数据和直三棱柱的体积公式即可求得体积.【详解】由三视图可知该几何体是一个横放的直三棱柱,底面为等腰三角形,底边长为,底面三角形高为,所以其体积为:.故选:B【点睛】本题考查三视图及几何体体积计算,认识几何体的几何特征是解题的关键,属于基础题.7、A【解析】根据幂函数得的定义,求得或,结合幂函数的性质,即可求解.【详解】由题意,幂函数,可得,解得或,当时,可得,可得在上单调递减,符合题意;当时,可得,可得在上无单调性,不符合题意,综上可得,实数的值为.故选:A.8、B【解析】选取,为基向量,将,用基向量表示后,再利用平面向量数量积的运算法则求解数量积.【详解】,,,故选B【点睛】本题考查了平面向量的运算法则以及向量数量积的性质及其运算,属中档题.向量的运算法则是:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差);(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和).9、C【解析】由分式函数值域的求法得:,又,所以,由高斯函数定义的理解得:函数的值域为,得解【详解】解:因为,所以,又,所以,由高斯函数的定义可得:函数的值域为,故选C【点睛】本题考查了分式函数值域的求法及对新定义的理解,属中档题10、B【解析】利用辅助角公式化简整理,得到辅助角与的关系,利用三角函数的图像和性质分析函数的最值,计算正弦值即可.【详解】,其中,因为当时取得最小值,所以,故.故选:B.11、B【解析】先由题意设点的坐标为,根据空间中的两点间距离公式,列出等式,求出,即可得出结果.【详解】因为点在轴上,所以可设点的坐标为,依题意,得,解得,则点的坐标为故选:B.12、A【解析】利用表示,代入求值.【详解】,即,.故选:A二、填空题(本大题共4小题,共20分)13、2【解析】由点在直线上得上,且表示点与原点的距离∴的最小值为原点到直线的距离,即∴的最小值为2故答案为2点睛:本题考查了数学的化归与转换能力,首先要知道一些式子的几何意义,比如本题表示点和原点的两点间距离,所以本题转化为已知直线上的点到定点的距离的最小值,即定点到直线的距离最小.14、4【解析】利用向量共线定理即可得出【详解】∵∥,∴=8,解得,其中,故答案为【点睛】本题考查了向量共线定理,考查了向量的坐标运算,属于基础题15、或【解析】先求两直线和的交点,再分类讨论,先分析所求直线斜率不存在时是否符合题意,再分析直线斜率存在时,设斜率为,再由原点到该直线的距离为,求出,得到答案.【详解】由和,得,即交点坐标为,(1)当所求直线斜率不存在时,直线方程为,此时原点到直线的距离为,符合题意;(2)当所求直线斜率存在时,设过该点的直线方程为,化为一般式得,由原点到直线的距离为,则,解得,得所求直线的方程为.综上可得,所求直线的方程为或故答案为:或【点睛】本题考查了求两直线的交点坐标,由点到直线的距离求参,还考查了对直线的斜率是否存在分类讨论的思想,属于中档题.三、16、【解析】由题得,利用正切函数的单调区间列出不等式,解之即得.【详解】由题意可知,则要求函数的单调递减区间只需求的单调递增区间,由得,所以函数的单调递减区间为.故答案为:.三、解答题(本大题共6小题,共70分)17、(1)是奇函数;证明见解析(2)【解析】(1)首先确定定义域,根据奇偶性定义可得结论;(2)令,可求得的范围,进而可得的值域.【小问1详解】由得:,定义域为,关于原点对称;,,为奇函数;【小问2详解】令,且,,或,或,的值域为.18、(1);(2).【解析】(1)将直线变形为斜截式即可得斜率;(2)由平行可得斜率,再由点斜式可得结果.【详解】(1)由,可得,所以斜率为;(2)由直线m与平行,且过点,可得m的方程为,整理得:.19、(1),,(2)【解析】(1)将函数变形为,由函数的周期及奇偶性可求解;(2)解方程得或,即或,利用正弦函数的性质可求解.【小问1详解】图象的相邻两对称轴间的距离为,的最小正周期为,即可得,又为奇函数,则,,又,,故的解析式为,令,得函数的递减区间为,.【小问2详解】,,,方程可化为,解得或,即或当时,或或解得或或当时,,所以综上知,在时,方程的所有根的和为20、(1)定义域为;为奇函数;(2)【解析】(1)由函数的定义域满足,可得其定义域,由可判断其奇偶性.(2)先由对数型函数的定义域可得,当时,由对数函数的单调性可得在上恒成立,即在上恒成立,即可得出答案.【详解】(1)由题意,函数,由,可得或,即定义域为;由,即有,可得为奇函数;(2)对于,恒成立,由,则,又,则由,即在上恒成立.由,即在上恒成立.由,可得时,y取得最小值8,则,因此可得,时,的取值范围是:【点睛】关键点睛:本题考查对数型函数的定义域和奇偶性的判断,不等式恒成立求参数问题,解答本题的关键是由对数型函数的定义域则满足,可得,然后将问题化为由,即在上恒成立,属于中档题.21、(1),;(2).【解析】(1)直接利用并集结果可得,;(2)根据可得,再对集合的解集情况进行分类讨论,即可得答案;【详解】解:(1);,∴,;(2),∴分情况讨论①,即时得;②若,即,中只有一个元素1符合题意;③若,即时得,∴∴综上【点睛】由集合间的基本关系求参数时,注意对可变的集合,分空集和不为空集两种情况.22、(1);(2)答案见解析.【解析】(1)分和,分别求出对应函数的值域,进而可求出结果;(2)作出函数的图象,数形结合即可分析出结果.【小问1详解】当时,,对称轴为,开口向上,则在上单调递减,在上单调递增,所以,即值域为;当时,,则在上单调递减,且,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度软件定制开发合同某金融科技公司3篇
- 二零二四年度广告投放与合作合同2篇
- 二零二四年度煤炭批发销售合同2篇
- 2024年枇杷露行业投资分析:枇杷露行业投资现状持续扩大
- 商城系统定制开发(2024版)合同3篇
- 英语学术论文写作攻略
- 孕期味觉失常的临床护理
- 二零二四年度版权租赁合同范本2篇
- 医疗保健品双十一策略
- 2024年度专利实施许可合同范本许可方2024年专用3篇
- 泰康之家养老社区产品标准——关键点
- 冬季行车安全教育试卷(含答案)
- 生产与仓储循环--确定控制是否得到执行穿行测试
- 剪纸艺术进校园活动简报
- 浅谈小学数学教学中如何培养学生的核心素养
- 小学入门数独100题(简单)
- 谈数学课堂中倾听教育的策略(徐艳)
- 首都经济贸易大学本科毕业论文格式模板范文
- 毛丝产生要因分析及解决方案
- 经济管理决策与分析
- 最新农村土地复垦竣工验收表资料
评论
0/150
提交评论