江西省赣州市十五县2023年数学高一上期末质量检测试题含解析_第1页
江西省赣州市十五县2023年数学高一上期末质量检测试题含解析_第2页
江西省赣州市十五县2023年数学高一上期末质量检测试题含解析_第3页
江西省赣州市十五县2023年数学高一上期末质量检测试题含解析_第4页
江西省赣州市十五县2023年数学高一上期末质量检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省赣州市十五县2023年数学高一上期末质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.函数,则的最大值为()A. B.C.1 D.2.已知函数的定义域为R,是偶函数,,在上单调递增,则不等式的解集为()A. B.C D.3.幂函数的图像经过点,若.则()A.2 B.C. D.4.为了得到函数的图象,只需要把函数的图象上所有的点①向左平移个单位,再把所有各点的横坐标缩短到原来的倍;②向左平移个单位,再把所有各点的横坐标缩短到原来的倍;③各点的横坐标缩短到原来的倍,再向左平移个单位:④各点的横坐标缩短到原来的倍,再向左平移个单位其中命题正确的为()A.①③ B.①④C.②③ D.②④5.设m、n是不同的直线,、、是不同的平面,有以下四个命题:(1)若、,则(2)若,,则(3)若、,则(4)若,,则其中真命题的序号是()A.(1)(4) B.(2)(3)C.(2)(4) D.(1)(3)6.已知函数是定义在R上的偶函数,且在上是单调递减的,设,,,则a,b,c的大小关系为()A. B.C. D.7.设集合,则是A. B.C. D.有限集8.已知函数是上的奇函数,且对任意实数、当时,都有.如果存在实数,使得不等式成立,则实数的取值范围是A. B.C. D.9.设函数的最小值为-1,则实数的取值范围是A. B.C. D.10.已知,,且,则的最小值为()A.4 B.9C.10 D.1211.已知集合,集合为整数集,则A. B.C. D.12.若函数恰有个零点,则的取值范围是()A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.已知函数,,若关于x的方程()恰好有6个不同的实数根,则实数λ的取值范围为_______.14.已知,若,则_______;若,则实数的取值范围是__________15.函数的图象一定过定点P,则P点的坐标是______16.写出一个能说明“若函数满足,则为奇函数”是假命题的函数:______三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.如图,在四棱锥P-ABCD中,底面ABCD是正方形,PD⊥底面ABCD,M,N分别是PA,BC的中点,且AD=2PD=2(1)求证:MN∥平面PCD;(2)求证:平面PAC⊥平面PBD;(3)求四棱锥P-ABCD的体积18.某厂商计划投资生产甲、乙两种商品,经市场调研发现,如图所示,甲、乙商品的投资x与利润y(单位:万元)分别满足函数关系与(1)求,与,的值;(2)该厂商现筹集到资金20万元,如何分配生产甲、乙商品的投资,可使总利润最大?并求出总利润的最大值19.已知圆,直线,点在直线上,过点作圆的切线,切点分别为.(Ⅰ)若,求点的坐标;(Ⅱ)求证:经过三点圆必过定点,并求出所有定点的坐标.20.已知函数.(1)判断函数f(x)的奇偶性;(2)讨论f(x)的单调性;(3)解不等式.21.(1)计算:(2)若,,求的值.22.已知(1)化简;(2)若=2,求的值.

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、C【解析】,然后利用二次函数知识可得答案.【详解】,令,则,当时,,故选:C2、A【解析】由题意判断出函数关于对称,结合函数的对称性与单调性求解不等式.【详解】∵是偶函数,∴函数关于对称,∴,又∵在上单调递增,∴在单调递减,∴可化为,解得,∴不等式解集为.故选:A3、D【解析】利用待定系数法求出幂函数的解析式,再求时的值详解】解:设幂函数,其图象经过点,,解得,;若,则,解得故选:D4、B【解析】利用三角函数图象变换可得出结论.【详解】因为,所以,为了得到函数的图象,只需要把函数的图象上所有的点向左平移个单位,再把所有各点的横坐标缩短到原来的倍,或将函数的图象上各点的横坐标缩短到原来的倍,再向左平移个单位.故①④满足条件,故选:B.5、D【解析】故选D.6、A【解析】先判断出上单调递增,由,即可得到答案.【详解】因为函数是定义在R上的偶函数,所以的图像关于y轴对称,且.又在上是单调递减的,所以在上单调递增.因为,,所以:,所以,即.故选:A7、C【解析】根据二次函数和指数函数的图象和性质,分别求出两集合中函数的值域,求出两集合的交集即可【详解】由集合S中的函数y=3x>0,得到集合S={y|y>0};由集合T中的函数y=x2﹣1≥﹣1,得到集合T={y|y≥﹣1},则S∩T=S故选C【点睛】本题属于求函数值域,考查了交集的求法,属于基础题8、A【解析】∵f(x)是R上的奇函数,∴,不妨设a>b,∴a﹣b>0,∴f(a)﹣f(b)>0,即f(a)>f(b)∴f(x)在R上单调递增,∵f(x)为奇函数,∴f(x﹣c)+f(x﹣c2)>0等价于f(x﹣c)>f(c2﹣x)∴不等式等价于x﹣c>c2﹣x,即c2+c<2x,∵存在实数使得不等式c2+c<2x成立,∴c2+c<6,即c2+c﹣6<0,解得,,故选A点睛:处理抽象不等式的常规方法:利用单调性及奇偶性,把函数值间的不等关系转化为具体的自变量间的关系;同时注意区分恒成立问题与存在性问题.9、C【解析】当时,为增函数,最小值为,故当时,,分离参数得,函数开口向下,且对称轴为,故在递增,,即.考点:分段函数的最值.【思路点晴】本题主要考查分段函数值域问题,由于函数的最小值为,所以要在两段函数图象都要讨论最小值.首先考虑没有参数的一段,当时,为增函数,最小值为.由于这一段函数值域已经包括了最小值,故当时,值域应该不小于,分离常数后利用二次函数图象与性质可求得参数的取值范围.10、B【解析】将展开利用基本不等式即可求解.【详解】由,,且得,当且仅当即,时等号成立,的最小值为,故选:B.11、A【解析】,选A.【考点定位】集合的基本运算.12、D【解析】由分段函数可知必须每段有且只有1个零点,写出零点建立不等式组即可求解.【详解】因为时至多有一个零点,单调函数至多一个零点,而函数恰有个零点,所以需满足有1个零点,有1个零点,所以,解得,故选:D二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】令,则方程转化为,可知可能有个不同解,二次函数可能有个不同解,由恰好有6个不同的实数根,可得有2个不同的实数根,有3个不同的实数根,则,然后根据,,分3种情况讨论即可得答案.【详解】解:令,则方程转化为,画出的图象,如图可知可能有个不同解,二次函数可能有个不同解,因为恰好有6个不同的实数根,所以有2个不同的实数根,有3个不同的实数根,则,因为,解得,,解得,所以,,每个方程有且仅有两个不相等的实数解,所以由,可得,即,解得;由,可得,即,解得;由,可得,即,而在上恒成立,综上,实数λ的取值范围为.故答案为:.14、①.②.【解析】先判断函数的奇偶性,由求解;再根据函数的单调性,由求解.【详解】因为的定义域为R,且,,所以是奇函数,又,则-2;因为在上是增函数,所以在上是增函数,又是R上的奇函数,所以在R上递增,且,所以由,得,即,所以,解得或,所以实数的取值范围是,故答案为:,15、(1,4)【解析】已知过定点,由向右平移个单位,向上平移个单位即可得,故根据平移可得到定点.【详解】由向右平移个单位,向上平移个单位得到,过定点,则过定点.【点睛】本题考查指数函数的图象恒过定点以及函数图象的平移问题.图象平移,定点也随之平移,平移后仍是定点.16、(答案不唯一)【解析】根据余弦型函数的性质求解即可.【详解】解:因为,所以的周期为4,所以余弦型函数都满足,但不是奇函数故答案为:三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)见解析(2)见解析(3)【解析】(1)先证明平面MEN∥平面PCD,再由面面平行的性质证明MN∥平面PCD;(2)证明AC⊥平面PBD,即可证明平面PAC⊥平面PBD;(3)利用锥体的体积公式计算即可【详解】(1)证明:取AD的中点E,连接ME、NE,∵M、N是PA、BC的中点,∴在△PAD和正方形ABCD中,ME∥PD,NE∥CD;又∵ME∩NE=E,PD∩CD=D,∴平面MEN∥平面PCD,又MN⊂平面MNE,∴MN∥平面PCD;(2)证明:∵四边形ABCD是正方形,∴AC⊥BD,又∵PD⊥底面ABCD,∴PD⊥AC,且PD∩BD=D,∴AC⊥平面PBD,∴平面PAC⊥平面PBD;(3)∵PD⊥底面ABCD,∴PD是四棱锥P-ABCD的高,且PD=1,∴正方形ABCD的面积为S=4,∴四棱锥P-ABCD的体积为VP-ABCD=×S四边形ABCD×PD=×4×1=【点睛】本题考查了空间中的平行与垂直关系的应用问题,也考查了锥体体积计算问题,是中档题18、(1),,,(2)分配生产乙商品的投资为1万元,甲商品的投资为万元,此时总利润的最大值为31.5万元.【解析】(1)代入点的坐标,求出,与,的值;(2)在第一问的基础上,表达出总利润的关系式,利用配方求出最大值.【小问1详解】将代入中,,解得:,将代入中,,解得:,所以,,,.【小问2详解】设分配生产乙商品的投资为m(0≤m≤20)万元、甲商品的投资为万元,此时的总利润为w,则,因为0≤m≤20,所以当,即时,w取得最大值,即分配生产乙商品的投资为1万元,甲商品的投资为万元,此时总利润的最大值为31.5万元.19、(1)点的坐标为或(2)见解析,过的圆必过定点和【解析】(1)设,由题可知,由点点距得到,解得参数值;(2)设的中点为,过三点的圆是以为直径的圆,根据圆的标准方程得到圆,根据点P在直线上得到,代入上式可求出,进而得到定点解析:(Ⅰ)设,由题可知,即,解得:,故所求点的坐标为或.(2)设的中点为,过三点的圆是以为直径的圆,设,则又∵圆又∵代入(1)式,得:整理得:无论取何值时,该圆都经过的交点或综上所述,过的圆必过定点和点睛:这个题目考查的是直线和圆的位置关系;一般直线和圆的题很多情况下是利用数形结合来解决的,联立的时候较少;还有就是在求圆上的点到直线或者定点的距离时,一般是转化为圆心到直线或者圆心到定点的距离,再加减半径,分别得到最大值和最小值20、(1)奇函数(2)在上单调递增(3)【解析】(1)依据奇偶函数定义去判断即可;(2)以定义法去证明函数的单调性;(3)把抽象不等式转化为整式不等式再去求解即可.【小问1详解】由得,所以函数f(x)的定义域为,关于原点对称又因为,故函数为奇函数【小问2详解】设任意,,则又,则,则,即故在上单调递增【小问3详解】由(2)知,函数在上单调递增,所以由,可得,解得,所

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论