新高考数学一轮复习讲练测专题1.2全称量词与存在量词、充要条件(练)解析版_第1页
新高考数学一轮复习讲练测专题1.2全称量词与存在量词、充要条件(练)解析版_第2页
新高考数学一轮复习讲练测专题1.2全称量词与存在量词、充要条件(练)解析版_第3页
新高考数学一轮复习讲练测专题1.2全称量词与存在量词、充要条件(练)解析版_第4页
新高考数学一轮复习讲练测专题1.2全称量词与存在量词、充要条件(练)解析版_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题1.2全称量词与存在量词、充要条件练基础练基础1.(全国高考真题(理))设命题SKIPIF1<0,则SKIPIF1<0为()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】特称命题的否定为全称命题,所以命题的否命题应该为SKIPIF1<0,即本题的正确选项为C.2.(2021·四川高三三模(理))命题SKIPIF1<0“SKIPIF1<0,SKIPIF1<0”的否定SKIPIF1<0为()A.SKIPIF1<0,SKIPIF1<0 B.SKIPIF1<0,SKIPIF1<0C.SKIPIF1<0,SKIPIF1<0 D.SKIPIF1<0,SKIPIF1<0【答案】B【解析】由含有一个量词的命题的否定的定义判断.【详解】因为命题SKIPIF1<0“SKIPIF1<0,SKIPIF1<0”是全称量词命题,所以其否定是存在量词命题,即SKIPIF1<0,SKIPIF1<0.故选:B3.(2021·上海高三二模)设α:xSKIPIF1<01且ySKIPIF1<02,β:x+ySKIPIF1<03,则α是β成立的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分又非必要条件【答案】A【解析】利用充分条件和必要条件的定义进行判断即可.【详解】解:若“SKIPIF1<0且SKIPIF1<0”则“SKIPIF1<0”成立,当SKIPIF1<0,SKIPIF1<0时,满足SKIPIF1<0,但SKIPIF1<0且SKIPIF1<0不成立,故SKIPIF1<0且SKIPIF1<0”是“SKIPIF1<0”的充分非必要条件.故选:A.4.(2021·江西高三三模(理))设SKIPIF1<0,则"SKIPIF1<0"是"SKIPIF1<0"的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件【答案】B【解析】用集合法判断即可.【详解】因为集合SKIPIF1<0是集合SKIPIF1<0的真子集,所以“SKIPIF1<0”是“SKIPIF1<0”的必要不充分条件.故选:B.5.(2021·浙江绍兴市·高三三模)已知z是复数,i是虚数单位,则“SKIPIF1<0”是“SKIPIF1<0”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【答案】A【解析】根据复数的运算及充分必要条件的判断即可求得结果.【详解】∵SKIPIF1<0,∴SKIPIF1<0;∵SKIPIF1<0,∴SKIPIF1<0.故“SKIPIF1<0”是“SKIPIF1<0”的充分而非必要条件.故选:A.6.(2021·四川高三二模(文))若SKIPIF1<0,SKIPIF1<0是平面SKIPIF1<0外的两条不同直线,且SKIPIF1<0,则“SKIPIF1<0”是“SKIPIF1<0”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件【答案】A【解析】根据线线、线面的平行关系,结合条件间的推出关系,判断“SKIPIF1<0”、“SKIPIF1<0”之间的充分、必要关系.【详解】∵SKIPIF1<0,SKIPIF1<0是平面SKIPIF1<0外的两条不同的直线,SKIPIF1<0,∴若SKIPIF1<0,则推出“SKIPIF1<0”;若SKIPIF1<0,则SKIPIF1<0或SKIPIF1<0与SKIPIF1<0相交;∴若SKIPIF1<0,SKIPIF1<0是平面SKIPIF1<0外的两条不同直线,且SKIPIF1<0,则“SKIPIF1<0”是“SKIPIF1<0”的充分不必要条件.故选:A.7.(2021·北京高三二模)“SKIPIF1<0是”“函数SKIPIF1<0有且只有一个零点”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件【答案】A【解析】根据函数零点的性质,结合充分条件和必要条件的定义进行判断即可.【详解】当SKIPIF1<0时,令SKIPIF1<0,则SKIPIF1<0,SKIPIF1<0,当SKIPIF1<0时,SKIPIF1<0有一个零点为1,SKIPIF1<0函数SKIPIF1<0只有一个零点,SKIPIF1<0当SKIPIF1<0时,SKIPIF1<0无零点,即SKIPIF1<0或SKIPIF1<0,SKIPIF1<0当SKIPIF1<0时,SKIPIF1<0,SKIPIF1<0或SKIPIF1<0,SKIPIF1<0是函数SKIPIF1<0只有一个零点的充分不必要条件,故选:A.8.(2021·四川泸州市·高三三模(理))“SKIPIF1<0”是“双曲线SKIPIF1<0:SKIPIF1<0的虚轴长为2”的()A.充分但不必要条件 B.必要但不充分条件C.充要条件 D.既不充分也不必要条件【答案】A【解析】根据双曲线SKIPIF1<0:SKIPIF1<0的虚轴长为2求出对应的SKIPIF1<0值即可判断.【详解】若双曲线SKIPIF1<0:SKIPIF1<0的虚轴长为2,则当SKIPIF1<0且SKIPIF1<0时,即SKIPIF1<0时,SKIPIF1<0,解得SKIPIF1<0,当SKIPIF1<0且SKIPIF1<0时,即SKIPIF1<0时,SKIPIF1<0,解得SKIPIF1<0,所以“双曲线SKIPIF1<0:SKIPIF1<0的虚轴长为2”对应的SKIPIF1<0值为SKIPIF1<0或SKIPIF1<0,故“SKIPIF1<0”是“双曲线SKIPIF1<0:SKIPIF1<0的虚轴长为2”的充分但不必要条件.故选:A.9.(2021·上海高三二模)已知函数SKIPIF1<0,则“SKIPIF1<0”是“SKIPIF1<0为偶函数”的()条件A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分也非必要条件【答案】A【解析】当SKIPIF1<0时,SKIPIF1<0,根据奇偶性的定义判断为偶函数,反之当SKIPIF1<0为偶函数时,SKIPIF1<0,SKIPIF1<0,从而可得结果.【详解】当SKIPIF1<0时,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0为偶函数.当SKIPIF1<0为偶函数时,SKIPIF1<0,SKIPIF1<0,综上所述SKIPIF1<0是SKIPIF1<0为偶函数的充分不必要条件,故选:A.10.(2021·四川高三三模(理))已知数列SKIPIF1<0为等比数列,“SKIPIF1<0”是“数列SKIPIF1<0为递增数列”的()A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件【答案】B【解析】根据等比数列的通项公式、数列的单调性,结合充分必要条件的定义分析可得答案.【详解】当SKIPIF1<0,则SKIPIF1<0,且SKIPIF1<0,则数列SKIPIF1<0为递增数列;反之,当数列SKIPIF1<0为递增数列时,也有可能出现SKIPIF1<0,故为充分不必要条件.故选:B练提升TIDHNEG练提升TIDHNEG1.(2021·陕西汉中市·高三二模(文))直线SKIPIF1<0,圆SKIPIF1<0:SKIPIF1<0,则“SKIPIF1<0”是“SKIPIF1<0与圆SKIPIF1<0相切”的()A.充要条件 B.充分不必要条件 C.必要不充分条件 D.既不充分也不必要条件【答案】B【解析】根据充分条件和必要条件的判断方法,分别判断充分性和必要性,即可的到答案.【详解】圆SKIPIF1<0的方程SKIPIF1<0,其圆心坐标为SKIPIF1<0,半径为SKIPIF1<0,当SKIPIF1<0时,直线SKIPIF1<0,圆心到直线的距离SKIPIF1<0,此时,直线SKIPIF1<0与圆SKIPIF1<0相切,故充分性成立;当直线SKIPIF1<0与圆SKIPIF1<0相切时,圆心到直线的距离SKIPIF1<0,所以SKIPIF1<0,故必要性不成立,所以,“SKIPIF1<0”是“直线SKIPIF1<0与圆SKIPIF1<0相切”的充分不必要条件.故选:B.2.(2021·江西高三其他模拟(文))“SKIPIF1<0”是“方程SKIPIF1<0表示焦点在SKIPIF1<0轴上的圆锥曲线”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件【答案】A【解析】先求出方程SKIPIF1<0表示焦点在SKIPIF1<0轴上的圆锥曲线对应的SKIPIF1<0的范围,再结合两者的关系可得两者之间的条件关系.【详解】当SKIPIF1<0时,方程SKIPIF1<0表示焦点在SKIPIF1<0轴上的双曲线;当SKIPIF1<0时,SKIPIF1<0可化为SKIPIF1<0,因为椭圆的焦点在SKIPIF1<0轴上,所以SKIPIF1<0即SKIPIF1<0,故方程SKIPIF1<0表示焦点在SKIPIF1<0轴上的圆锥曲线时,SKIPIF1<0或SKIPIF1<0,故“SKIPIF1<0”是“方程SKIPIF1<0表示焦点在SKIPIF1<0轴上的圆锥曲线”的充分不必要条件,故选:A.3.(2021·湖南高三三模)设a,b,m为实数,给出下列三个条件:①SKIPIF1<0:②SKIPIF1<0;③SKIPIF1<0,其中使SKIPIF1<0成立的充分不必要条件是()A.① B.② C.③ D.①②③【答案】B【解析】利用充分条件和必要条件的定义逐个分析判断即可【详解】解:对于①,当SKIPIF1<0时,SKIPIF1<0成立,而当SKIPIF1<0时,SKIPIF1<0成立,所以SKIPIF1<0是SKIPIF1<0的充要条件,所以①不合题意;对于②,当SKIPIF1<0时,由不等式的性质可知SKIPIF1<0成立,而当SKIPIF1<0,SKIPIF1<0时,SKIPIF1<0不成立,所以SKIPIF1<0是SKIPIF1<0的充分不必要条件,所以②符合题意;对于③,当SKIPIF1<0时,SKIPIF1<0成立,而SKIPIF1<0不成立,当SKIPIF1<0时,SKIPIF1<0成立,而SKIPIF1<0不成立,所以SKIPIF1<0是SKIPIF1<0的既不充分也不必要条件,所以③不合题意,故选:B4.(2021·浙江高三月考)在SKIPIF1<0中,“SKIPIF1<0为钝角三角形”是“SKIPIF1<0”的().A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件【答案】B【解析】考虑两个条件之间的推出关系后可判断两者之间的条件关系.【详解】取SKIPIF1<0,则SKIPIF1<0,故“SKIPIF1<0为钝角三角形”推不出“SKIPIF1<0”.若SKIPIF1<0,若SKIPIF1<0为钝角或直角,则SKIPIF1<0,矛盾,故SKIPIF1<0为锐角,同理SKIPIF1<0为锐角.若SKIPIF1<0,则SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,矛盾.故SKIPIF1<0即SKIPIF1<0为钝角.故“SKIPIF1<0”能推出“SKIPIF1<0为钝角三角形”,故选:B.5.(2021·江西上饶市·高三其他模拟(理))将函数SKIPIF1<0向左平移SKIPIF1<0个单位长度,所得图像的对应函数为SKIPIF1<0,则“SKIPIF1<0”是“SKIPIF1<0为奇函数”的()A.充分不必要 B.必要不充分C.充要条件 D.既不充分也不必要【答案】A【解析】分别从SKIPIF1<0及SKIPIF1<0为奇函数出发,证明对方是否成立,从而验证二者的关系.【详解】当SKIPIF1<0时,SKIPIF1<0,易知SKIPIF1<0为奇函数,则“SKIPIF1<0”是“SKIPIF1<0为奇函数”的充分条件;当“SKIPIF1<0为奇函数”时,SKIPIF1<0,则必有SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0只是其中一个值,则“SKIPIF1<0”是“SKIPIF1<0为奇函数”的不必要条件;故选:A6.【多选题】(2020·全国高一课时练习)下列命题是真命题的为()A.SKIPIF1<0B.SKIPIF1<0C.所有圆的圆心到其切线的距离都等于半径D.存在实数SKIPIF1<0,使得SKIPIF1<0【答案】ABC【解析】根据题意,依次分析各选项即可得答案.【详解】对于A,SKIPIF1<0,所以SKIPIF1<0,故A选项是真命题;对于B,当SKIPIF1<0时,SKIPIF1<0恒成立,故B选项是真命题;对于C,任何一个圆的圆心到切线的距离都等于半径,故C选项是真命题.对于D,因为SKIPIF1<0,所以SKIPIF1<0.故D选项是假命题.故选:ABC.7.【多选题】(2021·湖南常德市·高三一模)下列说法正确的是()A.命题SKIPIF1<0的否定SKIPIF1<0B.二项式SKIPIF1<0的展开式的各项的系数和为32C.已知直线SKIPIF1<0平面SKIPIF1<0,则“SKIPIF1<0”是SKIPIF1<0”的必要不充分条件D.函数SKIPIF1<0的图象关于直线SKIPIF1<0对称【答案】AD【解析】根据特称命题的否定求解方法可判断A;令SKIPIF1<0代入二项式即可求得各项的系数和,可判断B;由于直线SKIPIF1<0与SKIPIF1<0的关系不确定故能判断C;判断SKIPIF1<0是否等于SKIPIF1<0,就能判断D是否正确.【详解】解:对于A:命题SKIPIF1<0的否定SKIPIF1<0,故A正确;对于B:二项式SKIPIF1<0的展开式的各项的系数和为SKIPIF1<0,故B错误;对于C:已知直线SKIPIF1<0平面SKIPIF1<0,由于直线SKIPIF1<0与SKIPIF1<0的关系不确定,故“SKIPIF1<0”是SKIPIF1<0”的既不必要不充分条件,故C错误;对于D:由于SKIPIF1<0关于SKIPIF1<0的对称点为SKIPIF1<0,故SKIPIF1<0,满足SKIPIF1<0,故函数SKIPIF1<0的图象关于直线SKIPIF1<0对称,故D正确.故选:AD.8.【多选题】(2021·湖南高三月考)下列“若p,则q”形式的命题中,p是q的必要条件的是()A.若两直线的斜率相等,则两直线平行B.若SKIPIF1<0,则SKIPIF1<0C.已知SKIPIF1<0是直线SKIPIF1<0的方向向量,SKIPIF1<0是平面SKIPIF1<0的法向量,若SKIPIF1<0,则SKIPIF1<0D.已知可导函数SKIPIF1<0,若SKIPIF1<0,则SKIPIF1<0在SKIPIF1<0处取得极值【答案】BD【解析】只需判断必要性是否成立即可.【详解】对于A,两直线平行时,两直线的斜率相等或斜率都不存在,所以必要性不成立;对于B,x>10时,x>5,所以必要性成立;对于C,若SKIPIF1<0,则a//a或aSKIPIF1<0a,所以必要性不成立;对于D,f(x)在SKIPIF1<0处取得极值时,必有SKIPIF1<0,必要性成立.故选:BD9.(2021·四川高三三模(文))已知函数SKIPIF1<0,SKIPIF1<0.下列四个命题:①SKIPIF1<0,使SKIPIF1<0为偶函数;②若SKIPIF1<0,则SKIPIF1<0的图象关于直线SKIPIF1<0对称;③若SKIPIF1<0,则SKIPIF1<0在区间SKIPIF1<0上是增函数;④若SKIPIF1<0,则函数SKIPIF1<0有两个零点.其中所有真命题的序号是___________.【答案】①③【解析】根据一元二次函数及绝对值函数的性质,结合奇偶性,对称性,单调性对每一项进行分析即可.【详解】若SKIPIF1<0为偶函数,则SKIPIF1<0,则SKIPIF1<0对SKIPIF1<0恒成立,则SKIPIF1<0,故①正确;SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,即SKIPIF1<0,则SKIPIF1<0或SKIPIF1<0,若取SKIPIF1<0,则SKIPIF1<0关于SKIPIF1<0对称,②错误;若SKIPIF1<0,函数SKIPIF1<0的判别式SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,由二次函数性质,知SKIPIF1<0在区间SKIPIF1<0上是增函数,③正确;取SKIPIF1<0,满足SKIPIF1<0,则SKIPIF1<0或SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,即SKIPIF1<0有4个零点,④错误;故答案为:①③10.(2021·浙江高一期末)命题“SKIPIF1<0,SKIPIF1<0”的否定是_______________;设SKIPIF1<0,SKIPIF1<0,SKIPIF1<0分别是SKIPIF1<0的三条边,且SKIPIF1<0.我们知道SKIPIF1<0为直角三角形,那么SKIPIF1<0.反过来,如果SKIPIF1<0,那么SKIPIF1<0为直角三角形.由此可知,SKIPIF1<0为直角三角形的充要条件是SKIPIF1<0.请利用边长SKIPIF1<0,SKIPIF1<0,SKIPIF1<0给出SKIPIF1<0为锐角三角形的一个充要条件是______________.【答案】SKIPIF1<0,SKIPIF1<0SKIPIF1<0【解析】根据全称量词命题的否定直接写出即可;根据勾股定理,充要条件及反证法得出SKIPIF1<0为锐角三角形的一个充要条件是SKIPIF1<0.【详解】解:根据全称量词命题的否定为存在量词命题可知,命题“SKIPIF1<0,SKIPIF1<0”的否定是SKIPIF1<0,SKIPIF1<0;设SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的三条边,且SKIPIF1<0,SKIPIF1<0为锐角三角形的一个充要条件是SKIPIF1<0.证明如下:必要性:在SKIPIF1<0中,SKIPIF1<0是锐角,过点SKIPIF1<0作SKIPIF1<0于点SKIPIF1<0,如下图:根据图象可知SKIPIF1<0SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0可得证.充分性:在SKIPIF1<0中,SKIPIF1<0,所以SKIPIF1<0不是直角.假设SKIPIF1<0是钝角,如下图:过点SKIPIF1<0作SKIPIF1<0,交SKIPIF1<0延长线于点SKIPIF1<0,则SKIPIF1<0SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,与SKIPIF1<0矛盾.故SKIPIF1<0为锐角,即SKIPIF1<0为锐角三角形.练真题TIDHNEG练真题TIDHNEG1.(2019年高考全国Ⅱ卷理)设α,β为两个平面,则α∥β的充要条件是()A.α内有无数条直线与β平行 B.α内有两条相交直线与β平行C.α,β平行于同一条直线 D.α,β垂直于同一平面【答案】B【解析】由面面平行的判定定理知:内有两条相交直线都与平行是的充分条件;由面面平行的性质定理知,若,则内任意一条直线都与平行,所以内有两条相交直线都与平行是的必要条件.故α∥β的充要条件是α内有两条相交直线与β平行.故选B.2.(2019·天津高考真题(文))设SKIPIF1<0,则“SKIPIF1<0”是“SKIPIF1<0”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】SKIPIF1<0等价于SKIPIF1<0,故SKIPIF1<0推不出SKIPIF1<0;由SKIPIF1<0能推出SKIPIF1<0.故“SKIPIF1<0”是“SKIPIF1<0”的必要不充分条件.故选B.3.(2019年高考浙江)若a>0,b>0,则“a+b≤4”是“ab≤4”的()A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件【答案】A【解析】当时,,则当时,有,解得,充分性成立;当时,满足,但此时,必要性不成立,综上所述,“”是“”的充分不必要条件.故选A.4.(2020·北京高考真题)已知SKIPIF1<0,则“存在SKIPIF1<0使得SKIPIF1<0”是“SKIPIF1<0”的().A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【答案】C【解析】根据充分条件,必要条件的定义,以及诱导公式分类讨论即可判断.【详解】(1)当存在SKIPIF1<0使得SKIPIF1<0时,若SKIPIF1<0为偶数,则SKIPIF1<0;若SKIPIF1<0为奇数,则SKIPIF1<0;(2)当SKIPIF1<0时,SKIPIF1<0或SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0或SKIPIF1<0,亦即存在SKIPIF1<0使得SKIPIF1<0.所以,“存在SKIPIF1<0使得SKIPIF1<0”是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论