版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省承德实验中学2023-2024学年数学高一上期末统考模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图所示,正方体中,分别为棱的中点,则在平面内与平面平行的直线A.不存在 B.有1条C.有2条 D.有无数条2.已知水平放置的四边形按斜二测画法得到如图所示的直观图,其中,,,,则原四边形的面积为()A. B.C. D.3.将进货单价为40元的商品按60元一个售出时,能卖出400个.已知该商品每个涨价1元,其销售量就减少10个,为了赚得最大利润,售价应定为A.每个70元 B.每个85元C.每个80元 D.每个75元4.四个函数:①;②;③;④的图象(部分)如下,但顺序被打乱,则按照从左到右将图象对应的函数序号安排正确的一组是()A.④①②③ B.①④②③C.③④②① D.①④③②5.三个数20.3,0.32,log0.32的大小顺序是A.0.32<log0.32<20.3 B.0.32<20.3<log0.32C.log0.32<20.3<0.32 D.log0.32<0.32<20.36.30°的弧度数为()A. B.C. D.7.设,则A. B.0C.1 D.8.已知集合A={x|x<2},B={x≥1},则A∪B=()A. B.C. D.R9.在特定条件下,篮球赛中进攻球员投球后,篮球的运行轨迹是开口向下的抛物线的一部分.“盖帽”是一种常见的防守手段,防守队员在篮球上升阶段将球拦截即为“盖帽”,而防守队员在篮球下降阶段将球拦截则属“违规”.对于某次投篮而言,如果忽略其他因素的影响,篮球处于上升阶段的水平距离越长,则被“盖帽”的可能性越大.收集几次篮球比赛的数据之后,某球员投篮可以简化为下述数学模型:如图所示,该球员的投篮出手点为P,篮框中心点为Q,他可以选择让篮球在运行途中经过A,B,C,D四个点中的某一点并命中Q,忽略其他因素的影响,那么被“盖帽”的可能性最大的线路是()A.P→A→Q B.P→B→QC.P→C→Q D.P→D→Q10.在平行四边形ABCD中,E是CD中点,F是BE中点,若+=m+n,则()A., B.,C., D.,二、填空题:本大题共6小题,每小题5分,共30分。11.若集合,则满足的集合的个数是___________.12.已知=,则=_____.13.已知,且,则的最小值为__________.14.函数的定义域是___________.15.下列命题中正确的是________(1)是的必要不充分条件(2)若函数的最小正周期为(3)函数的最小值为(4)已知函数,在上单调递增,则16.已知点是角终边上任一点,则__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知tanα=,求下列各式的值(1)+;(2);(3)sin2α-2sinαcosα+4cos2α.18.已知函数.(1)求f(x)的定义域及单调区间;(2)求f(x)的最大值,并求出取得最大值时x的值;(3)设函数,若不等式f(x)≤g(x)在x∈(0,3)上恒成立,求实数a的取值范围.19.定义在上的奇函数,已知当时,求实数a的值;求在上解析式;若存在时,使不等式成立,求实数m的取值范围20.已知函数的图象两相邻对称轴之间的距离是,若将的图象先向右平移个单位长度,再向上平移2个单位长度后,所得图象关于轴对称且经过坐标原点.(1)求的解析式;(2)若对任意,恒成立,求实数的取值范围.21.已知,,当k为何值时.(1)与垂直?(2)与平行?平行时它们是同向还是反向?
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据已知可得平面与平面相交,两平面必有唯一的交线,则在平面内与交线平行的直线都与平面平行,即可得出结论.【详解】平面与平面有公共点,由公理3知平面与平面必有过的交线,在平面内与平行的直线有无数条,且它们都不在平面内,由线面平行的判定定理可知它们都与平面平行.故选:D.【点睛】本题考查平面的基本性质、线面平行的判定,熟练掌握公理、定理是解题的关键,属于基础题.2、B【解析】根据直观图画出原图,可得原图形为直角梯形,计算该直角梯形的面积即可.【详解】过点作,垂足为则由已知可得四边形为矩形,为等腰直角三角形,根据直观图画出原图如下:可得原图形为直角梯形,,且,可得原四边形的面积为故选:B.3、A【解析】设定价每个元,利润为元,则,故当,时,故选A.考点:二次函数的应用.4、B【解析】根据各个函数的奇偶性、函数值的符号,判断函数的图象特征,即可得到【详解】解:①为偶函数,它的图象关于轴对称,故第一个图象即是;②为奇函数,它的图象关于原点对称,它在上的值为正数,在上的值为负数,故第三个图象满足;③为奇函数,当时,,故第四个图象满足;④,为非奇非偶函数,故它的图象没有对称性,故第二个图象满足,故选:B【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.5、D【解析】由已知得:,,,所以.故选D.考点:指数函数和对数函数的图像和性质.6、B【解析】根据弧度与角度之间的转化关系进行转化即可.详解】解:,故选.【点睛】本题考查了将角度制化为弧度制,属于基础题.7、B【解析】详解】故选8、D【解析】利用并集定义直接求解即可【详解】∵集合A={x|x<2},B={x≥1},∴A∪B=R.故选D【点睛】本题考查并集的求法,考查并集定义、不等式性质等基础知识,考查运算求解能力,是基础题9、B【解析】定性分析即可得到答案【详解】B、D两点,横坐标相同,而D点的纵坐标大于B点的纵坐标,显然,B点上升阶段的水平距离长;A、B两点,纵坐标相同,而A点的横坐标小于B点的横坐标,等经过A点的篮球运行到与B点横坐标相同时,显然在B点上方,故B点上升阶段的水平距离长;同理可知C点路线优于A点路线,综上:P→B→Q是被“盖帽”的可能性最大的线路.故选:B10、B【解析】通过向量之间的关系将转化到平行四边形边上即可【详解】由题意可得,同理:,所以所以,故选B.【点睛】本题考查向量的线性运算,重点利用向量的加减进行转化,同时,利用向量平行进行代换二、填空题:本大题共6小题,每小题5分,共30分。11、4【解析】求出集合,由即可求出集合的个数【详解】因为集合,,因为,故有元素0,3,且可能有元素1或2,所以或或或故满足的集合的个数为,故答案为:12、##0.6【解析】寻找角之间的联系,利用诱导公式计算即可【详解】故答案为:13、【解析】利用已知条件凑出,再根据“”的巧用,最后利用基本不等式即可求解.【详解】由,得,即.因为所以,,则=,当且仅当即时,等号成立.所以当时,取得最小值为.故答案为:.14、【解析】利用根式、分式的性质求函数定义域即可.【详解】由解析式知:,则,可得,∴函数定义域为.故答案为:.15、(3)(4)【解析】对于(1)对角取特殊值即可验证;对于(2)采用数形结合即可得到答案;对于(3)把函数进行化简为关于的函数,再利用基本不等式即可得到答案;对于(4)用整体的思想,求出单调增区间为,再让即可得到答案.【详解】对于(1),当,当,不满足是的必要条件,故(1)错误;对于(2),函数的最小正周期为,故(2)错误;对于(3),,当且仅当等号成立,故(3)正确;对于(4)函数的单调增区间为,若在上单调递增,则,又,故(4)正确.故答案为:(3)(4).16、##【解析】将所求式子,利用二倍角公式和平方关系化为,然后由商数关系弦化切,结合三角函数的定义即可求解.【详解】解:因为点是角终边上任一点,所以,所以,故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)【解析】(1)+=+=+=.(2)===.(3)sin2α-2sinαcosα+4cos2α====.18、(1)定义域为(﹣1,3);f(x)的单调增区间为(﹣1,1],f(x)的单调减区间为[1,3);(2)当x=1时,函数f(x)取最大值1;(3)a≥﹣2.【解析】(1)利用对数的真数大于零即可求得定义域,根据复合函数的单调性“同增异减”即可求得单调区间;(2)根据函数的单调性即可求解;(3)将f(x)≤g(x)转化为x2+ax+1≥0在x∈(0,3)上恒成立,即a≥﹣(x+)在x∈(0,3)上恒成立,即即可,结合基本不等式即可求解.【详解】解:(1)令2x+3﹣x2>0,解得:x∈(﹣1,3),即f(x)的定义域为(﹣1,3),令t=2x+3﹣x2,则,∵为增函数,x∈(﹣1,1]时,t=2x+3﹣x2为增函数;x∈[1,3)时,t=2x+3﹣x2为减函数;故f(x)的单调增区间为(﹣1,1];f(x)的单调减区间为[1,3)(2)由(1)知当x=1时,t=2x+3﹣x2取最大值4,此时函数f(x)取最大值1;(3)若不等式f(x)≤g(x)在x∈(0,3)上恒成立,则2x+3﹣x2≤(a+2)x+4在x∈(0,3)上恒成立,即x2+ax+1≥0在x∈(0,3)上恒成立,即a≥﹣(x+)在x∈(0,3)上恒成立,当x∈(0,3)时,x+≥2,则﹣(x+)≤﹣2,故a≥﹣219、(1);(2);(3).【解析】根据题意,由函数奇偶性的性质可得,解可得的值,验证即可得答案;当时,,求出的解析式,结合函数的奇偶性分析可得答案;根据题意,若存在,使得成立,即在有解,变形可得在有解设,分析的单调性可得的最大值,从而可得结果【详解】根据题意,是定义在上的奇函数,则,得经检验满足题意;故;根据题意,当时,,当时,,又是奇函数,则综上,当时,;根据题意,若存在,使得成立,即在有解,即在有解又由,则在有解设,分析可得在上单调递减,又由时,,故即实数m的取值范围是【点睛】本题考查函数的奇偶性的应用,以及指数函数单调性的应用,属于综合题20、(1);(2)【解析】(1)根据周期计算,,时满足条件,即,过原点得到,得到答案.(2)设,,根据函数最值得到,计算得到答案.【详解】(1),,故.向右平移个
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 英语人教新起点(一起)四年级下册-Unit 3 Lesson 2 Travel plans教学设计
- 人教版初中八年级数学上册《第十一章 三角形》大单元整体教学设计2022课标
- 儿科护理品管护理安全
- 《连续函数性质》课件
- 宫腔镜术前护理措施
- 《员工测试与甄选》课件
- 农民工法律培训
- 社会保险的历史演进
- 大班美术活动:我们上学去
- 医院急救设备应急调配机制
- 电路分析基础(浙江大学)智慧树知到期末考试答案章节答案2024年浙江大学
- 建模师工作合同
- 2023年福建农商银行招聘考试真题
- 幼儿园大班美术课件:《我的手套真暖和》
- QBT 2460-1999 聚碳酸酯(PC)饮用水罐
- 软件开发项目验收方案
- 大学生生涯发展展示 (修改版)
- JT-T 1495-2024 公路水运危险性较大工程专项施工方案编制审查规程
- 康复治疗技术的职业规划课件
- 冬至知识选择题问答
- 2023年人教版中考物理专题复习-九年级全册简答题专题答案及解析
评论
0/150
提交评论