




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省安阳市第三十五中学等几校2024届高一数学第一学期期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.为了预防信息泄露,保证信息的安全传输,在传输过程中都需要对文件加密,有一种加密密钥密码系统,其加密、解密原理为:发送方由明文→密文(加密),接收方由密文→明文.现在加密密钥为,如“4”通过加密后得到密文“2”,若接受方接到密文“”,则解密后得到的明文是()A. B.C.2 D.2.已知直线与平行,则实数的取值是A.-1或2 B.0或1C.-1 D.23.在中,是的().A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件4.已知集合,.则()A. B.C. D.5.函数的定义域为,值域为,则的取值范围是()A. B.C. D.6.函数的部分图象大致是图中的()A.. B.C. D.7.若不计空气阻力,则竖直上抛的物体距离抛出点的高度h(单位:)与时间t(单位:)满足关系式(取,为上抛物体的初始速度).一同学在体育课上练习排球垫球,某次垫球,排球离开手臂竖直上抛的瞬时速度,则在不计空气阻力的情况下,排球在垫出点2m以上的位置大约停留()A.1 B.1.5C.1.8 D.2.28.已知函数有唯一零点,则负实数()A. B.C.-3 D.-29.在空间直角坐标系中,点关于面对称的点的坐标是A. B.C. D.10.函数,设,则有A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.关于函数有下述四个结论:①是偶函数②在区间单调递增③的最大值为1④在有4个零点其中所有正确结论的编号是______.12.已知,若,使得,若的最大值为M,最小值为N,则___________.13.随机抽取100名年龄在[10,20),[20,30),…,[50,60)年龄段的市民进行问卷调查,由此得到样本的频率分布直方图如图所示.从不小于40岁的人中按年龄段分层抽样的方法随机抽取12人,则在[50,60)年龄段抽取的人数为______.14.函数,的图象恒过定点P,则P点的坐标是_____.15.若且,则取值范围是___________16.已知向量,,若,则与的夹角为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)求函数的定义域;(2)设,若函数在上有且仅有一个零点,求实数的取值范围;(3)设,是否存在正实数,使得函数在内的最大值为4?若存在,求出的值;若不存在,请说明理由.18.已知函数.(1)求的最小正周期;(2)当时,求的最大值和最小值.19.已知,(1)求的值;(2)求的值;(3)求的值.20.已知函数是上的偶函数,当时,.(1)用单调性定义证明函数在上单调递增;(2)求当时,函数的解析式.21.已知函数fx(1)求fx定义域;(2)判断函数fx(3)若fx≤log2mx+5对于
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】根据题意中给出的解密密钥为,利用其加密、解密原理,求出的值,解方程即可求解.【详解】由题可知加密密钥为,由已知可得,当时,,所以,解得,故,显然令,即,解得,即故选:A.2、C【解析】因为两直线的斜率都存在,由与平行得,当时,两直线重合,,故选C.3、B【解析】根据不等式的性质,利用充分条件和必要条件的定义进行判定,即可求解,得到答案.【详解】在中,若,可得,满足,即必要性成立;反之不一定成立,所以在中,是的必要不充分条件.故选B.【点睛】本题主要考查了充分条件和必要条件的判定,其中解答中熟练应用三角函数的性质是解答的关键,属于基础题.4、C【解析】直接利用交集的运算法则即可.【详解】∵,,∴.故选:.5、B【解析】观察在上的图象,从而得到的取值范围.【详解】解:观察在上的图象,当时,或,当时,,∴的最小值为:,的最大值为:,∴的取值范围是故选:B【点睛】本题考查余弦函数的定义域和值域,余弦函数的图象,考查数形结合思想,属基础题6、D【解析】根据函数的奇偶性及函数值得符号即可得到结果.【详解】解:函数的定义域为R,即∴函数为奇函数,排除A,B,当时,,排除C,故选:D【点睛】函数识图常用的方法(1)定性分析法:通过对问题进行定性的分析,从而得出图象的上升(或下降)的趋势,利用这一特征分析解决问题;(2)定量计算法:通过定量的计算来分析解决问题;(3)函数模型法:由所提供的图象特征,联想相关函数模型,利用这一函数模型来分析解决问题7、D【解析】将,代入,得出时间t,再求间隔时间即可.【详解】解:将,代入,得,解得,所以排球在垫出点2m以上的位置大约停留.故选:D8、C【解析】注意到直线是和的对称轴,故是函数的对称轴,若函数有唯一零点,零点必在处取得,所以,又,解得.选C.9、C【解析】关于面对称的点为10、D【解析】>1,<0,0<<1,∴b<c<1,又在x∈(-∞,1)上是减函数,∴f(c)<f(b)<0,而f(a)>0,∴f(c)<f(b)<f(a).点睛:在比较幂和对数值的大小时,一般化为同底数的幂(利用指数函数性质)或同底数对数(利用对数函数性质),有时也可能化为同指数的幂(利用幂函数性质)比较大小,在不能这样转化时,可借助于中间值比较,如0或1等.把它们与中间值比较后可得出它们的大小二、填空题:本大题共6小题,每小题5分,共30分。11、①③【解析】利用奇偶性定义可判断①;时,可判断②;分、时求出可判断故③;时,由可判断④.【详解】因为,,所以①正确;当时,,当时,,,时,单调递减,故②错误;当时,,;当时,,综上的最大值为1,故③正确;时,由得,解得,由不存在零点,所以在有2个零点,故④错误.故答案为:①③.12、【解析】作出在上的图象,为的图象与直线y=m交点的横坐标,利用数形结合思想即可求得M和N﹒【详解】作出在上的图象(如图所示)因为,,所以当的图象与直线相交时,由函数图象可得,设前三个交点横坐标依次为、、,此时和最小为N,由,得,则,,,;当的图象与直线相交时,设三个交点横坐标依次为、、,此时和最大为,由,得,则,,;所以.故答案为:.13、3【解析】根据频率分布直方图,求得不小于40岁的人的频率及人数,再利用分层抽样的方法,即可求解,得到答案【详解】根据频率分布直方图,得样本中不小于40岁的人的频率是0.015×10+0.005×10=0.2,所以不小于40岁的人的频数是100×0.2=20;从不小于40岁的人中按年龄段分层抽样的方法随机抽取12人,在[50,60)年龄段抽取人数为【点睛】本题主要考查了频率分布直方图的应用,其中解答中熟记频率分布直方图的性质,以及频率分布直方图中概率的计算方法是解答的关键,着重考查了推理与运算能力,属于基础题14、【解析】令,解得,且恒成立,所以函数的图象恒过定点;故填.15、或【解析】分类讨论解对数不等式即可.【详解】因为,所以,当时,可得,当时,可得.所以或故答案为:或16、##【解析】先求向量的模,根据向量积,即可求夹角.【详解】解:,,所以与的夹角为.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3)存在,.【解析】(1)根据对数函数的定义域列不等式求解即可.(2)由函数的单调性和零点存在定理,列不等式求解即可.(3)由对勾函数的性质可得函数的单调区间,利用分类讨论的思想讨论定义域与单调区间的关系,再利用函数的最值存在性问题求出实数的值.【详解】(1)由题意,函数有意义,则满足,解得,即函数的定义域为.(2)由,且,可得,且为单调递增连续函数,又函数在上有且仅有一个零点,所以,即,解得,所以实数的取值范围是.(3)由,设,则,易证在为单调减函数,在为单调增函数,当时,函数在上为增函数,所以最大值为,解得,不符合题意,舍去;当时,函数在上为减函数,所以最大值为,解得,不符合题意,舍去;当时,函数在上减函数,在上为增函数,所以最大值为或,解得,符合题意,综上可得,存在使得函数的最大值为4.【点睛】本题考查了对数函数的定义域问题、零点存在定理、对勾函数的应用,考查了理解辨析的能力、数学运算能力、分类讨论思想和转化的数学思想,属于一般题目.18、(1);(2)最大值为,最小值为.【解析】(1)展开两角差的余弦,再由辅助角公式化简,利用周期公式求周期;(2)由x的范围求出相位的范围,再由正弦函数的有界性可求函数在区间上的最大值和最小值.【小问1详解】,,的最小正周期为;【小问2详解】因,所以,所以,所以函数在区间上的最大值为,最小值为.19、(1);(2)4;(3).【解析】(1)根据同角函数关系得到正弦值,结合余弦值得到正切值;(2)根据诱导公式化简,上下同除余弦值即可;(3)结合两角和的正弦公式和二倍角公式可得到结果.【详解】(1)∵,,∴∴(2).(3)=,根据二倍角公式得到;代入上式得到=.【点睛】这个题目考查了三角函数的同角三角函数的诱导公式和弦化切的应用,以及二倍角公式的应用,利用诱导公式化简三角函数的基本思路:(1)分析结构特点,选择恰当公式;(2)利用公式化成单角三角函数;(3)整理得最简形式.20、(1)详见解析;(2).【解析】(1)利用单调性的定义即证;(2)当时,可得,再利用函数的奇偶性即得.【小问1详解】,且,则,∵,且,∴,∴,即,∴函数在上单调递增;【小问2详解】当时,,∴,又函数是上的偶函数,∴,即当时,.21、(1)x(2)函数fx(3)-2【解析】(1)解不等式4-x(2)根据奇偶性的定义
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农业用地土地使用权转让合同
- 我的一周生活记录:周记作文(13篇)
- 《国际音标基础知识:初中英语发音教学教案》
- 创新培养模式下地理学学科的互馈机制构建
- 英语医学术语应用能力考试内容
- 个人学习进展记录表
- 高性能机器人电驱动关节生产线项目可行性研究报告(范文模板)
- 2025年应用统计学专业资格考试试题及答案
- 2025年网络数据分析与优化策略考试题及答案
- 2025年农村经济与社会发展能力测评试题及答案
- 防火门安装工艺流程与注意事项
- 2025年河北省公需课《深入学习贯彻关于网络安全的重要论述全面加强网络安全保障体系和能力建设》答案
- 2025年项目管理软件应用试题及答案
- 2025至2030年中国24小时动态心电分析系统行业投资前景及策略咨询报告
- 国际压力性损伤-溃疡预防和治疗临床指南(2025年版)解读课件
- 绿电交易协议和合同
- 世界公民教育的发展趋势
- 成人PICC堵塞的预防及处理专家共识解读课件
- 2025年福建省龙岩市中考数学模拟卷 (原卷版+解析版)
- 煤矿顶板事故预防及应急处置知识培训课件
- 新疆乌鲁木齐市2024-2025学年八年级上学期期末生物学试题(含答案)
评论
0/150
提交评论